
CONTACT
1957 Joseph Dr., Moraga, CA 94556

marketing@continuent.com

QA FOR MISSION-CRITICAL SOFTWARE:
The Comprehensive Testing of Tungsten Clustering and Replicator

October 2021

Patrik Michalak



2

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Table of Contents

Part 1: Introduction 4

STARTING FROM THE BOTTOM 4

THE WORLD OF A CONTINUENT QA ENGINEER 5

Part 2: Simulating Realistic Conditions 6

ALWAYS WITH A CLEAN SHIELD 6

KEEP IT LIGHTWEIGHT 7

TOO MANY LINUX DISTRIBUTIONS 7

A LITTLE BIG PLAYGROUND 8

MYSQL VERSIONS 9

ENVIRONMENTS MATRIX 9

Part 3: Bug Hunting 10

RUBBER DUCK METHOD 10

RUNNING TESTS UNDER LOAD 11

TARGETED TUNGSTEN COMPONENTS 12

SO...HOW MANY TESTS? 14

Part 4: Testing Time and Test Suites Management 15

CI/CD TOOLS 15



3

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

TEST SUITES MANAGEMENT 16

LEVELS OF TESTING 17

WATCHING PERFORMANCE 18

Conclusion 20

About Author 21

Table of Contents



4

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Part 1: Introduction
Quality of software is a critical topic in the IT world today. Agile methodologies in software 

development brought new opportunities and customized development processes, which 

make releasing software easier and faster. But, for this reason, many experience that a lot 

of new, small IT companies provide “fast cooked” software, with none, or very poor quality 

assurance (QA).

“Whatever can happen, will happen.”

Murphy’s law

At Continuent, we develop business-critical and mission-critical MySQL database clustering 

and replication software that is used to protect billions of dollars of revenue each year. For 

this reason, and the fact that our software runs in many different environments and covers a 

variety of use cases, we have a bit of an extensive testing process.

This whitepaper will bring you closer to the world of QA at Continuent. We will talk about 

the most important and, of course, interesting parts of our QA.

Starting from the Bottom
Tungsten Clustering and Tungsten Replicator are written in the Java programming language. 

At the very beginning of the QA process, the source code is built, and individual compo-

nents and small pieces of code are immediately tested using the JUnit framework. This way 

we test our software on code level - every function and every possible line.

But that’s not all we can do to test on code level. Every time any developer makes any 

change in code, or even new features, the rest of the developers do a short code review. 

This is very effective for double-checking with another pair of eyes with minimal effort. The 

main goal is to find inconsistencies or possible bugs in the code of the other developer, but 

the other advantage is that developers are always up-to-date on code written by others, 

and thus they understand “how it works.”



5

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

The World of a Continuent QA Engineer
At Continuent, there is a huge space of possibilities of how to test, and what to test; there 

are endless combinations of environments and different setups. 

Work in QA is not isolated to component development. The QA engineer must have “a little 

bit” of knowledge in all possible IT professions in the company. It’s not about monkey-style 

testing. One must know networking, system administration, automation tools, follow new 

technologies and have a sense for architecture design.

Every day brings different problems to solve. We work day after day on something new.

Part 1: Introduction



6

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Part 2: Simulating Realistic Conditions
After Tungsten components are built, we test their functionality in the most realistic con-

ditions possible; this means simulating the dynamic environments running on customer 

servers in Production. To achieve this, we need tens of servers ready to deploy Tungsten 

software, perform many different tests and in all the different use cases. Thankfully we are 

living in the future, and we can use cloud technologies to reserve the computing power 

and quantity of virtual servers to fit our needs. For this purpose, we leverage Amazon EC2 

instances in AWS.

Always With a Clean Shield
Every time we want to build and test (or just test) our software, we create a fresh new 

group of instances. This proves to us, we always have a clean environment for testing and 

all packages are up to date and with latest versions. After testing is done, and we are no 

longer interested in those running instances, we terminate them. This way we are not wast-

ing money for constantly running servers and, more importantly, we don’t face environmen-

tal issues or inconsistencies.

Developers are not dependent on one shared group of servers! We create groups of serv-

ers on demand; each group is dedicated to one build/testing round. Also, one testing pro-

cess could create 1 to 6 parallel child processes, each having its own group of servers and 

running tests from a shared pool of test suites.

When we say “we do this, or that” we mean - these processes are fully automated! Starting 

servers, dependencies preparation, build software and then test software in thousands of 

different ways and finally terminating servers and reports creation. As folk wisdom says: 

“Never spend 10 minutes doing something by hand, when you can spend 10 hours failing to 

automate it!” 



7

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Keep It Lightweight
In the past, we put a lot of libraries and packages that were not defined as prerequisites for 

Tungsten Clustering, just to make our testing process more comfortable for us. We found 

out it’s not best practice because our customers don’t have all packages we use for testing 

installed. That made our testing environment “not clean enough”. Now, we install only the 

packages and third party software that we define in our Documentation as prerequisites for 

Tungsten.

And what about libraries that make test development easier? We basically removed all de-

pendencies from tests and testing tools and did everything on our own. We have our own 

testing frameworks written from scratch, which fully fits and is targeted to testing only our 

products. Anyway, there is no public testing framework, fitting and able to test software like 

Tungsten Clustering and Replication. For DevOps we use tools like Ansible, but for testing 

we prefer to have it all under our own tight control.

Too Many Linux Distributions
At Continuent, we make sure that our Tungsten software is able to run on many different 

operating systems and environments. For this reason, we test on multiple different Linux 

distributions. In the article Automated MySQL Server Preparation Using Ansible you can find 

a description of the Ansible tool and source codes that we use for installation and configu-

ration of prerequisites on our servers, including on different supported Linux distributions.

As every Linux distribution has a slightly different file system, we look for performance and 

security ‘holes’ by testing in different Linuxes. During ‘multi-linux’ testing we cover:
• Amazon Linux 2
• CentOS 7
• CentOS 8
• RHEL 7
• RHEL 8
• Debian 9
• Debian 10
• Ubuntu 18.04 LTS
• SUSE Linux Enterprise Server 15

Part 2: Simulating Realistic Conditions

https://docs.continuent.com/tungsten-clustering-6.1/prerequisite.html?utm_campaign=QA_WP&utm_content=docs&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/resources/blog/automated-mysql-server-preparation-using-ansible?utm_campaign=QA_WP&utm_content=blog&utm_medium=Articles_Reports&utm_source=White_paper


8

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

A Little Big Playground
When Continuent discusses Composite Active/Passive and Active/Active topologies, one of 

the use cases is Geo-scale multi-region MySQL Clustering. Communication between servers 

located around the world brings new unexpected environment conditions like high laten-

cy and other performance issues. For this reason, we test our composite topologies across 

multiple regions.

The solution is pretty ‘easy;’ we reserve a few servers in multiple regions, then we set up 

networking between them and run the tests. For example, when we are testing cross-re-

gion replication and clustering in a Composite Active/Passive topology, we prepare 3 

instances per each of following regions in AWS:

• US East (N. Virginia)

• Europe (Ireland)

• Asia Pacific (Singapore)

Part 2: Simulating Realistic Conditions

https://www.continuent.com/products/use-cases/geo-scale-mysql-global-operations?utm_campaign=QA_WP&utm_content=use_case&utm_medium=Articles_Reports&utm_source=White_paper


9

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

MySQL Versions
Last but not least we test our software against all possible versions of MySQL. Tungsten 

Clustering version 5.4.0 (released in 2019) brought full support of MySQL 8, during 2020 we 

certified our software for Percona Server distributions, and Tungsten Clustering version 7.0.0 

will bring full certification for distributions of MariaDB.

At the moment, it is possible to test on servers with the following distributions of MySQL 

server:

• MySQL versions 5.6, 5.7 and 8.0

• Percona Server versions 5.6, 5.7 and 8.0

• MariaDB versions 10.0, 10.1, 10.2, 10.3, 10.4 and 10.5

Environments Matrix
As described above, we are able to set up pretty various and dynamic environments for 

testing. 9 Linux distributions, multi-region, 12 MySQL versions in total… oh, and we are also 

interested in testing different Java versions! We are able to set servers on Java versions from 

8 to 13, but most important are long term support Java versions 8 and 11.

Now, if we want to test all possible combinations of Linux, MySQL, Java and include mul-

ti-region testing, it will get us a massive multidimensional matrix of possible environments. 

Just for information, theoretically, with all our test suites, it takes weeks to finish tests on all 

possible environments we can prepare. Also we calculated with 6 parallel processes which 

could be busy working on this task. This is why we defined some combinations, they are 

necessary to be tested and also ‘levels’ of testing - from the easy smoke testing to ad-

vanced testing of release candidates.

Part 2: Simulating Realistic Conditions



10

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Part 3: Bug Hunting
Functional, non-functional testing, smoke testing, integration testing, performance testing, 

regression testing… Yes, we have them all! Yet we don’t divide our tests into categories by 

theoretical software testing methodologies. There is a difference between testing mobile 

applications and testing complex software like Tungsten Clustering and Replication. Of 

course we follow recommended testing practices, but our tests depend fully on our soft-

ware architecture and its components.

We don’t use any public testing frameworks even though that would ease the testing pro-

cess. This means more work for us, but gives us absolute freedom and control over our QA 

environment and tests.

In the last section we described how we prepared a testing environment that fulfills our 

needs. Next, we want to deploy Tungsten software to those servers, install the topology, 

run tests, uninstall the topology and collect as many logs and as much information as possi-

ble.

Rubber Duck Method
Let’s focus now on the most advanced 

testing approach in our company - we 

test our software mostly as a whole sys-

tem, installed on virtual servers, simulating 

realistic conditions and scenarios. Our 

testing tools and Tungsten software are 

independent units on those servers. Testing 

tools see Tungsten software as a black box, 

but Tungsten software allows them to look 

inside the box through an interface, which 

uncovers a lot of information. Also, the test-

ing tools know how to read the log files of 

Tungsten components, or where to look for 

them in the environment.
Rubber ducks busy in debugging our software - Amsterdam, 

October 2019



11

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Meet our main testing tool which is named Quackbook! At Continuent, besides the elegant 

swans in our logo, we love rubber ducks as a symbol of our QA. Quackbook is an intelligent 

testing tool, which is able to install, uninstall and test any topology in any environment. It 

fully understands the topology, its states, inputs, operations, and outputs. The tool is eas-

ily modifiable (it’s very easy to add new functionality) and offers a lot of possibilities and 

options. It’s a software written in pure Perl programming language without any external 

dependencies (libraries or modules).

From our perspective, we divide the tests into two important categories - testing features 

and testing scenarios. We can say that feature testing is also a kind of scenario testing. The 

difference is in test implementation. Automated tests for features are integrated right inside 

the source code of Quackbook. They test overall functionality from the top to bottom, from 

bottom to top and also from side to side. ;-) They test all supported topologies (Standalone 

cluster, Composite Active/Active and Composite Active/Passive), all supported installation 

methods (staging and INI installation method) and all supported cluster operations.

On the other hand, every testing scenario is a standalone script (which usually covers one 

use case) and uses available Quackbook functions to understand and operate a topology. 

These scenarios could be written in Perl, calling any function in Quackbook, or in a JSON 

notation understandable by Quackbook. Writing test scenarios is a very easy and fast way 

for developers to cover every developed functionality with a test. Not only are new fea-

tures tested with these scenarios, but also fixed bugs, support cases, edge scenarios and 

non-standard configurations can be tested this way.

Running Tests Under Load
Once we have Tungsten Clustering installed on our servers, and before we start testing, 

one additional step is required - run a continuous load of queries into the database. For this 

purpose we use the tool Bristlecone, which generates mixed transactions. Continuent has 

released the Bristlecone Testing Tool under a GPL v2 license and the source code is availa-

ble to the public.

Part 3: Bug Hunting

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://github.com/continuent/bristlecone


12

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Targeted Tungsten Components
In our QA, we test Tungsten Clustering as a system, but also separate components, parts 

and related tools:

• Tungsten Clustering as a whole system - all possible topologies, installation meth-

ods, SSL, servers configuration and roles, servers reporting chains, replication be-

tween servers and services, connections through connectors, and a lot of more…

• Cluster operations - switch, failover, recovery, backup and restore; including switch, 

failover and recovery on service level in Composite Active/Passive topologies.

• Tungsten Replicator - homogenous and heterogenous replication topologies.

• Tungsten Connector - establishing and testing connections using different pro-

gramming languages and frameworks.

• TPM (Tungsten Package Manager) - installations, updates, upgrades, various TPM 

commands.

• tungsten_* tools - helpful scripts

Testing the version 7.0.0 of the Tungsten product suite constituted a major part of our QA 

work in 2021. This major release is complete with new features, functionality and improved 

security. For this reason we expanded our QA with:

• API v2 (RestAPI)

 – Enables better performance, lower overhead

 – Can be used to replace the older monitoring scripts with the lighter-weight API 

calls

 – Includes a new convenience tool called tapi with functions to help with daily 

admin tasks

 – Updates the vast majority of Tungsten CLI tools so users may optionally use 

the API v2 interface when desired

 – Lays the foundation for both Kubernetes development and Tungsten Cloud

• Security Enhancements

 – SSL within all cluster layers is now enabled by default

 – Added support for TLSv1.3

 – On-disk THL Encryption now available

• Performance Improvements

Part 3: Bug Hunting

https://www.continuent.com/products/tungsten-clustering?utm_campaign=QA_WP&utm_content=product&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/products/tungsten-clustering?utm_campaign=QA_WP&utm_content=product&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/products/tungsten-clustering/features-benefits/advanced-replication?utm_campaign=QA_WP&utm_content=product&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/products/tungsten-clustering/features-benefits/intelligent-proxy?utm_campaign=QA_WP&utm_content=product&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/resources/blog/the_new_REST_API?utm_campaign=QA_WP&utm_content=blog&utm_medium=Articles_Reports&utm_source=White_paper


13

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

 – At-rest THL compression

 – In-flight THL compression

 – Tungsten JDBC driver

• All New Tungsten Dashboard

 – New optional REACT front-end with impressive design

 – Significant performance improvements

 – Integration with API v2

 – Many new features, including notes per node

• Enhanced Monitoring

 – Prometheus integration - full metrics now available for Connector, Manager 

and Replicator

 – New tmonitor command-line tool

 – Dashboard integration with Prometheus and Grafana

 – The Nagios and Zabbix checks are also available via API v2 using the `tapi` 

tool.

• Improved Management

 – Audit Logging now available within the Connector

 – Improved Backup/Restore and Reprovision support, including support for 

`mariabackup`

 – the tpm diag command has been polished in many areas

 – tungsten_provision_slave has been renamed and improved to 

tprovision

• Replication Updates

 – MariaDB 10.3+ now fully supported

 – The replicator will now be able to handle new SQL_MODES available in later 

releases of MySQL and MariaDB, these are as follows:

 · MySQL: TIME_TRUNCATE_FRACTIONAL

 · MariaDB: TIME_ROUND_FRACTIONAL, SIMULTANEOUS_ASSIGNMENT

• IPv6 Support, RedHat/CentOS 8 Certification, and more!

Part 3: Bug Hunting

https://www.continuent.com/resources/blog/proper-prometheus-plumbing-watch-your-tungsten-cluster-using-built-exporters?utm_campaign=QA_WP&utm_content=blog&utm_medium=Articles_Reports&utm_source=White_paper


14

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

So...How Many Tests?
It’s hard to say what the “number of tests” really means. We may distinguish 3 groups based 

on the ‘level’:

1. Test suite - group of scenarios, which are somehow related together (by topology, 

by component, etc.)

2. Test scenario / tests for feature - group of commands and ‘checks’, to reproduce 

and fully exercise some feature or real life scenario

3. ‘Checks’ - small (base) tests anytime during scenario lifetime, determining if current 

state is correct

In these terms, we may say that we have:

• 48 unique test suites, but including (reduced) matrix of 9 possible Linux distribu-

tions and 12 RDBMS versions, we run during release build 139 test suites in total

• During release testing we also have:

 – 3,434 tested scenarios

 – 156,503 checks (base tests)

Not counted in the above statistics, we also have JUnit tests during Tungsten product build 

time, which are testing on code level (specific code lines or functions).

Part 3: Bug Hunting



15

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Part 4: Testing Time and Test Suites 
Management
If we could divide our QA into layers, at the bottom layer there are tests of specific fea-

tures and scenarios. These consist of steps, how to reproduce a certain feature, and how 

to validate that feature. Individual tests of features and scenarios can be grouped together 

according to similar characteristics, for example: tests for features/scenarios grouped by 

topology, tests for TPM, connector tests, API tests…let’s name these groups of tests: “test 

suites.”

CI/CD Tools
At the very beginning of our CI/CD pipeline, source code and test suites are handed over 

to our Bamboo server. Bamboo is a continuous integration tool from Atlassian that we use 

to externally build Tungsten products and run tests on them (and do other automated pro-

cesses as well). Bamboo is comparable to other CI/CD tools: “Give me instructions, and I will 

process them.” It’s a pretty straight-forward tool, where one ‘Plan’ (CI/CD pipeline process) 

consists of serial ‘Stages’ (CI/CD steps in pipeline) and each Stage could have any number 

of parallel ‘Jobs’.

Bamboo was designed to run Plans (CI/CD pipelines) always in the same way:

• “Here are Stages, for source code build and testing”

• “Here are Jobs for running test suites in parallel”

• “Want to skip some Stage or Job? No, dynamic builds are not allowed. Sorry.”

• “You can create more Plans, trigger them when needed and provide artifacts be-

tween them.”

In short, we are not using this tool as it was originally designed to be used…

When we are developing, we need some kind of freedom to run test suites, or even spe-

cific tests, and provide for custom options in our testing environment. This means we need 

different levels of testing and different behaviours of the environment. For this reason we 

developed some intelligent software which is running as a wrapper inside of the Bamboo 



16

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

server. This software nicely changes the behaviour of the Bamboo CI/CD pipeline to fit our 

needs.

The main characteristics of this tool are:

• Lots of options to customize the environment (Linux distributions, RDBMS versions, 

Java versions, testing options….).

• Ability to re-run different tests on one product tarball.

• Ability to switch between development branches and versions (Git version con-

trol).

• Test suites management.

• Nicely formatted HTML reports generated at the end.

Test Suites Management
So, when testing options are defined, our Bamboo wrapper/tool creates a shared pool of 

test suites that should be executed, and also defining their corresponding environment. In 

the next Stage in the sequence, which is actually created from a number of parallel jobs, 

each running copy of the Bamboo tool ‘takes’ the test suite from a shared pool in an intelli-

gent way:

Part 4: Testing Time and Test Suites Management

Build Stage

Bamboo CI/CD plan

Testing Stage

Build Job Test Suit 1

Test Suit 2

Test Suit 3

Schema of basic Bamboo CI/CD pipeline



17

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

• The first job, which takes a test with some custom Linux distribution and/or RDBMS 

version and marks itself as a dedicated job for this environment setup - this saves 

time in preparing the same environment for multiple parallel jobs.

• Test suites that fit the current job’s setup are taken in order from longest to short-

est (according to duration) - this ensures all parallel jobs will have almost the same 

execution time.

Levels of Testing
Let’s say we don’t need to run all our hundreds of test suites after every application code 

change. It’s useless and wastes computing power and time (i.e. when developers make a 

change in Tungsten Connector API v2, but run all available test suites). We call a limited run 

“branch testing’’ (one branch in our Git version control tree represents one new feature, or 

one fix). For the change made in Tungsten Connector API v2, we need to run only the test 

suite which tests Tungsten Connector API v2 via branch testing.

Part 4: Testing Time and Test Suites Management

Build Stage

Bamboo CI/CD plan with our wrapper

Testing Stage Final Stage

Build
Tungsten
Products

Reports
Generator

Shared Pool
of Test Suits

Bamboo
Wrapper
Agent 1

Bamboo
Wrapper
Agent 6

...

Schema of testing using parallel Bamboo wrapper agents



18

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

In fact, there are options for testing which developers can use wisely to save testing time 

while ensuring enough testing for coverage of their fix, such as:

1. Running only a specific test file (test scenario) - there is no need to run the whole 

test suite with all test scenarios on the same environment setup.

2. Running only one specific test suite - eg. developer wants to run only the test suite 

for Tungsten Connector API v2.

3. Running a ‘family’ of test suites - eg. use an option like ‘TEST-API’ to run all test 

suites, which is focused on the API v2 (Tungsten Connector, Manager, Replicator, 

Tungsten Cloud APIs); this way we can also test only a group of test suites focused 

on, for example, Tungsten Replicator, Tungsten Connector or TPM.

And finally, the true ‘levels’ of testing (used for regular testing of main version control 

branches, to final release builds):

1. Minimal acceptance tests - a group of test suites that cover main functionality, but 

in wide spectrum. This level takes up to one hour of testing time.

2. Running all tests on reference Linux distribution (Amazon Linux 2) and reference 

MySQL version (MySQL 5.7). As a bonus, there is a fortune wheel combination of 

Linux distribution and MySQL version which is executed (every build has a different 

combination, in order, not a random pick). Fortune wheel provides smoke testing, 

to verify that the other Linux distribution and MySQL version works as expected. 

Testing can also be fun, huh? This level takes up to 8 hours of testing time.

3. Finally, the release level of testing. This level takes almost 24 hours to complete, but 

it tests all available test suites in all possible combinations of environment setup - 

using the whole environment matrix, as we described in Part 2: Simulating Realistic 

Conditions. The output of this testing level is a release candidate - a fully and deep-

ly tested product tarball, which is provided to our customers.

Watching Performance
For every cluster operation like switch, failover, recovery, etc., and also some “cctrl” com-

mands and queries through the Connector (aka Proxy), we collect the time to execute such 

actions. From the collected samples of data, we can generate a nice graph as shown be-

low.

Part 4: Testing Time and Test Suites Management



19

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

The graph represents (in an ideal case) a normal distribution of data samples, where we can 

find an average value (major frequency of samples) and a variance of data samples in both 

directions. From those data we can estimate what the standard time should be for the oper-

ation (i.e. a cluster switch operation) and what time variance is acceptable.

In reports generated at the end of a testing phase, we can easily watch performance sta-

tistics, see a possible regression of an action’s duration or, on the other hand, any improve-

ment.

0

20

40

60

80

100

120

Frequencye
Fr

eq
ue

nc
y

Time (s)

switch_std (939)

10 20 30 40 50 60

Distribution of data samples (duration) for cluster operation (switch)

Part 4: Testing Time and Test Suites Management



20

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

Conclusion
We are proud of our comprehensive QA. The fact that Tungsten runs in many different 

environments and covers a variety of use cases, makes for an extensive and unique testing 

process alone. Besides this, Tungsten has been used to protect billions of dollars of revenue 

each year for over a decade, with a 100% rate of customer satisfaction - for MySQL, MariaDB 

and Percona MySQL applications that are business-critical and mission-critical. 

That means it must be durable, strong, and hardened; hence why we call it Tungsten.

Hope you enjoyed learning about the world of QA at Continuent. If you have any questions 

or feedback, reach out to sales@continuent.com.

https://www.continuent.com/products/tungsten-clustering?utm_campaign=QA_WP&utm_content=product&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/about-us/why-continuent?utm_campaign=QA_WP&utm_content=about_us&utm_medium=Articles_Reports&utm_source=White_paper
https://www.continuent.com/about-us/our-customers?utm_campaign=QA_WP&utm_content=about_us&utm_medium=Articles_Reports&utm_source=White_paper
mailto:sales%40continuent.com?subject=


21

QA for Mission-Critical Software: 
The Comprehensive Testing of Tungsten Clustering and Replicator

About Author

Patrik Michalák
DevOps and QA Engineer

Patrik has been with Continuent for a few years, having 

previously worked as a full-stack web and mobile applica-

tion developer. He’s a technology enthusiast, and has been 

awarded at country-level for a photography processing pro-

ject, and has been involved as an IoT architect in a scooter 

sharing project in his country in 2019. Patrik is skilled in Perl, 

Python, JavaScript (ES6), C, Java, SQL, PHP, including techni-

cal skills in Linux administration and automation tools.



“Battle-tested” is the Continuent Tungsten QA (Quality Assurance) guarantee. Continuent 
Tungsten is a clustering and replication solution for MySQL and MariaDB used by some of 
the largest MySQL estates to achieve continuous MySQL operations, locally and globally (HA, 
DR and Geo Distribution). Besides the stellar support team and fully-integrated components, 
customers say: “Stability,” and, “Tungsten just works.”


	Part 1: Introduction
	Starting from the Bottom
	The World of a Continuent QA Engineer

	Part 2: Simulating Realistic Conditions
	Always With a Clean Shield
	Keep It Lightweight
	Too Many Linux Distributions
	A Little Big Playground
	MySQL Versions
	Environments Matrix

	Part 3: Bug Hunting
	Rubber Duck Method
	Running Tests Under Load
	Targeted Tungsten Components
	So...How Many Tests?

	Part 4: Testing Time and Test Suites Management
	CI/CD Tools
	Test Suites Management
	Levels of Testing
	Watching Performance

	Conclusion
	About Author

