
CONTACT
1957 Joseph Dr., Moraga, CA 94556

sales@continuent.com

TungsTen ReplicaToR
How It Works

https://www.continuent.com/about-us/contact-us
mailto:sales%40continuent.com?subject=

2

Tungsten Replicator: How It Works

Table of Contents

Introduction 5

Basic Architecture 5

Transactions 6

Starting, Stopping, Restarting 7

Replicator Roles 8

Replicator Communication 10

Replicator Management 11

Components 12

Extractors 12

Internal Queuing Mechanism 13

Appliers 14

Filters 14

THL Management and Storage 14

Finite State Machine (FSM) 15

THL and Data Management 16

Transaction History Log (THL) 16

THL and Transactional Headers 17

Metadata 18

Transactional Data 18

Statement-Based Events 18

Row-Based Events 19

3

Tungsten Replicator: How It Works

Row-Based Inserts 22

Row-Based Updates 23

Row-Based Deletes 24

Immutability 24

Storage 25

THL Position 26

Extraction From MySQL 28

Architecture 28

Reading the Binary Log 28

Metadata and Environment 29

Local and Remote Reading 30

Binlog Management 30

Applying to JDBC Targets 32

Architecture 32

Applying to MySQL 34

Applying to Oracle & PostgreSQL 35

Parallel Apply 35

Applying to Data Warehouse Targets With Batch Loading 37

Architecture 37

Applying to Vertica 39

Applying to Redshift 40

Applying to Hadoop 41

Table of Contents

4

Tungsten Replicator: How It Works

Applying to Native Targets 42

Applying to MongoDB 42

Applying to Kafka 43

Filtering 46

Architecture 46

Filtering Points 47

JavaScript Filters 49

About Continuent 50

Table of Contents

5

Tungsten Replicator: How It Works

Introduction

Basic Architecture
Tungsten Replicator is a high-performance
database replication tool that can extract
data from various MySQL sources and apply
that data to databases, data warehouses,
NoSQL databases and messaging platforms.
Tungsten Replicator is a complex piece of
software that is based upon a few key and
core design principles.

• Tungsten Replicator is optimized for replicating data from one data source to
another as quickly as possible.

• Replicators are designed to replicate data continuously without the need or
requirement to pause. In general, replicators are configured and left to execute
without requiring monitoring or management.

• Data is exchanged using a core flexible architecture-, database- and data-neutral
format.

• Data is replicated exactly between source and target, even if they are different
database types, allowing for, and taking into account environment, storage, and
data format differences. For example, a row in MySQL is replicated into Oracle as a
row, but into Kafka as a message, and MongoDB as a BSON document.

• Data sources and targets are abstracted, so that it's possible to read from any flavor
of MySQL and write to a number of different databases or targets.

• The basic unit of data exchange is the database transaction. The replicator always
reads or writes an entire transaction.

• The basic unit of execution is the service. A single service reads from or writes to a
data source.

• Each service is configured as a series of stages, configured into a pipeline. Data is
moved from one stage to the next through the pipeline, one transaction at a time.

• Each replicator is capable of supporting multiple services within a single replicator
instance.

• Within each stage, the data can be manipulated (filtered) by removing, modifying,
or adding information.

• Each service is either online (actively operating) or offline (paused).

• Each replicator is by default configured to operate with full data integrity; in the
event of a failure, transactions are rolled back or canceled, and errors cause the
replicator to stop.

6

Tungsten Replicator: How It Works

Collectively, this means that a replicator can:

• Replicate between databases in a heterogeneous or homogeneous deployment.

• Replicate from multiple sources and to multiple targets.

• Change, format, and filter information dynamically.

• Replicate data continuously and at high speed.

• Replication can be stopped, paused, and restarted without losing or skipping data.

• In general, replicators are deployed as follows:

• An Extractor replicator is deployed on the same host instance as the database,
or as an offboard extractor when direct host installations are not possible and
is configured to read data from the data source and generate the transactions.

• An Applier replicator is deployed on the same host as the target database, or
as an offboard extractor when direct host installations are not possible, reads
data from the extractor replicator over a network connection and applies the
transactions to the target data store.

Therefore, there are typically at least two replicators in a deployment, and they are config-
ured to extract and apply transactions from a source database to a target database. In each
case, the unit of information transferred and used as a reference point is the transaction.

Transactions
The fundamental unit of information transfer in Tungsten Replicator is the transaction. Within
most databases, the concept of a transaction is the update of one or more data objects
in a manner that is considered to be consistent. Whether your database is transactionally
capable or not, most data updates can be identified as a single operation. For example,
transactions have distinct implications within MySQL. Within a document-based and
eventually consistent database such as MongoDB a 'transaction' is usually the operation of
updating a single document.

Within data sources that support ACID (Atomicity, Consistency, Isolation, Durability) trans-
actions, the rules and implications of ACID compliance can be duplicated. For databases
where ACID compliance is not available, a 'best case' solution is used, for example, writing
a record (and allowing the record to be rewritten if rollback is not supported). The exact
semantics and method used depend on the databases being replicated.

As each transaction is read from a data source, the entire transaction and all the data
created, deleted, or updated during that transaction are stored into the internal data format
used by the replicator, the Transaction History Log (THL). Each transaction is given a mono-
tonically increasing unique ID (the transaction sequence number inside the THL is called
“seqno”). This ID can be used to identify the transaction, and is also used to identify the pro-

Introduction

7

Tungsten Replicator: How It Works

gress of the replicator. By using the sequence number it's possible to identify the replication
point. If the replication stops (whether requested or due to an error) the transaction number
(seqno) can be used to restart replication from the correct position without repeating or
skipping data.

The implications of working on a transactional basis are:

• Transactions are distinct elements and supported blocks within many databases.
For those data sources that support it, only full transactions are committed and
verified on disk, and transactions that fail will be rolled back.

• Only complete transactions are read from a data source. Partial transaction reads
are not supported.

• Only complete transactions are written to a target data source (where possible).
For databases where ACID compliance is not supported, transactions may be
repeated or re-processed.

• The current sequence number and position are only advanced when the replica-
tion of the transaction from the data source to THL, or from THL to the data target
have completed in full.

The process of replicating data is therefore entirely centered around the transaction:

1. Read a completed transaction from a data source.

2. Convert the transaction into an architecture-neutral THL format.

3. Give the transaction a sequence number.

4. Record the current source replicator position along with the sequence number and
data source.

5. Transfer the transaction to target replicator(s) as THL.

6. Apply transactions in the THL to a target data source.

7. Record the current target replicator position along with the sequence number and
data source.

One feature of the transactional nature of the replicator is that replication can be started,
paused and restarted using the sequence number (seqno) as a reference point.

Starting, Stopping, Restarting
Each replicator records the position based on the current role: the extracted source data
is used on an Extractor, and the data applied to the target for an Applier. When extracting
data, this information is used to identify the position within the source data where transac-
tions have been read from. When applying data, the same information is written as each
transaction is applied to the target database.

Introduction

8

Tungsten Replicator: How It Works

For example, within MySQL the current replicator position is recorded into a table within
the database (trep_commit_seqno), using the current sequence number (of the data
extracted) and source position (MySQL binary log file and position within the file).

If an Extractor replicator is stopped, either because replication has been requested to
be stopped (i.e. during maintenance) or due to a failure to apply, the current 'position' is
recorded. When the replicator is restarted, the recorded position is retrieved and used
to calculate where to begin reading from. For example, if the replicator is stopped when
transaction sequence number 72 has been fully extracted, transaction reads will continue
from sequence number 73 when the replicator restarts. More importantly, replication will
continue by reading the next recorded transaction on the source database.

On an Applier replicator, the THL is applied to a target database by transaction. When trans-
action 94 has been fully written, this status is recorded. If the replicator is stopped, when it
restarts it will then apply sequence 95.

If the process of either extracting or applying a transaction fails, the transaction is not
written to the THL, or committed to the target database. The use of the transaction in these
cases makes not only for a useful logical boundary, it allows for a logical start/stop point.
The transaction, as a single block of data, becomes the boundary for all operations.

Replicator Roles

Introduction

9

Tungsten Replicator: How It Works

All Tungsten replicators are configured to have one of two roles, Extractor or Applier. There
are some important attributes and distinctions between the two roles:

• Extractor – extracts data from a source and generates THL on disk, as well as
serving THL requests from Appliers over a network connection.

• Applier – reads THL from a remote replicator and applies the data to a target
data source. An Applier is also capable of serving the THL to another downstream
replicator.

Functionality Extractor Applier
Stage dbms-to-q Yes No

Stage q-to-thl Yes No

Stage remote-to-thl No Yes

Stage thl-to-q No Yes

Stage q-to-dbms No Yes

Extracts from data source Yes No

Extracts from remote THL No Yes

Applies to data source No Yes

Shares THL over network Yes Yes

The stages are important in terms of understanding the operation of the replicators, since
each stage is responsible for a specific type of data movement process. It is the combina-
tion of the stages that define the role of the replicator and what it is capable of.

Each stage performs one of the following operations:

• Converts source database information into THL.

• Provides a queue to store or process data, for both ingesting and generating THL
data.

• Converts THL data into a target database format to apply into a target data store.

However, each replicator can have multiple pipelines configured, but only one pipeline,
and therefore one role, is enabled at any one time for each service. This means that a repli-
cator can also switch roles at any time. For most normal deployments this does not happen,
but when the replicator is configured as part of Tungsten Clustering, the ability to switch the
replicator role and pipelines without needing to redeploy or change the configuration is a
significant part of how manual switch and automatic failover is handled.

Introduction

10

Tungsten Replicator: How It Works

In the event of a role switch, the use of the transaction boundary is also exploited. In an
environment where you are replicating between two MySQL servers that transaction
boundary becomes the common point. If HostA is a Source and HostB is a Target of that
Source, and roles change at transaction 1722, then 1722 becomes the reference point. When
roles are switched on both hosts, HostB starts extracting transactions with sequence 1723
and HostA expects to apply sequence 1723 next.

The significance of the roles affects not only the operation of the replicator, it also has an
impact on the abilities of the replicator and what information is exchanged. For example,
when extracting data and adding information such as column names, this data can only be
extracted from the source database from which the replicator is reading transactions.

The use of the individual stages and the pipelines used to define services within the rep-
licator also makes it possible to create a pipeline that both extracts data and applies it to
a target. The use of this direct method of replication, however, also imposes a different
problem in the flexibility of the extraction and apply process.

Despite the differences between the roles, the underlying exchange of information
between replicators is comparatively basic.

Replicator Communication
All replicators are designed to be standalone in their operation. Although replicators either
generate THL to be shared over the network, or read remote events from the network, the
communication is not a required part of the operation.

An Extractor replicator, for example, will read transactions from a source database and
generate the THL for those transactions, regardless of whether an Applier replicator is
connected to the replicator and reading those events. This allows an Extractor replicator to
extract data and generate THL independently.

An Applier replicator will continue applying data to a target database if there is local THL
available even if the connection to the Source has gone offline. This means that an Applier
can continue to apply data even if the Extractor replicator or Source database is offline.

In each case, the replicators operate independently. For replication to occur between the
two replicators both must be online and able to communicate with each other, but both
can operate without that communication taking place.

When an Applier replicator first connects to an Extractor replicator, some basic information
is exchanged to ensure that the Extractor replicator and THL match through the use of an
EPOCH number, which is a sequence number in the THL. Once this information has been
exchanged and established, the THL on the Source is sent to the requesting Target in a

Introduction

11

Tungsten Replicator: How It Works

continuous stream of THL data. Only when communication is broken, for example when
going offline or failure, is the handshake information exchanged again.

The use of a single port makes management, configuration, and monitoring of the network
used for the replicator very simple. This stream of information, and single channel of data,
means that the THL can be sent over a single port and at a very high speed without a sig-
nificant protocol overhead. The default port for communication between replicators is TCP
port 2112. This can be changed, and can also be encrypted using TLS and SSL certificates.

The actual transmission of the information over this port is done as quickly as the THL can
be generated. One effect of this process is that a single network interface could become
saturated if the data can be extracted from a source database quickly enough. There is no
way to throttle the network communication, since this would ultimate negate the high-per-
formance characteristics.

Replicator Management
The replicator provides a management interface through the Java JMX interface. This
interface supports local and remote control over a network. This allows all aspects of the
replicator to be controlled both from a command-line interface and other compatible tools.
Since the replicator is a core part of the Tungsten Clustering product, it is this interface that
allows the Tungsten Clustering manager to control the replicator (i.e. bring the replicator
online or offline), or change the roles and operational stance.

For standalone deployments, the replicator is controlled and managed through a single
command-line interface tool called trepctl. This single tool supports all the required
functionality to set the replicator status, roles, modes, and control the operation.

Installation and configuration of the replicator and all the associated tools, including the
filters, command-line tools and other components, is done via a powerful tool called tpm
(Tungsten Package Manager).

In the majority of situations these tools and utilities are used very sparingly. The replicator
has been designed to self-manage processing and replication. Once installed, configured
and launched, a replicator will continue to operate until it is unable to due to factors outside
its control, such as a data source or network failure. The replicator automatically manages
the connections, operational log files and the generated THL files.

Ultimately this means that the replicator does not require active management to keep it
running. Only in the event of a failure or configuration change are changes to the replicator
operation required.

Introduction

12

Tungsten Replicator: How It Works

Components
The replicator is composed of different components that work together in order to support
the overall service. It should be noted that the components described in this section work
together to support a single 'service', that is, the extraction or application of data from or to
a single source. A single replicator can support multiple services.

The individual components work together as part of the configured service pipeline. Pipe-
lines and their role in execution will be described in further detail later in this document,
but it is important to understand the process of extracting or applying data is only possible
through this pipeline and stage approach.

There are six main components to the replicator.

Three are directly related to specific stages of the replication process:

• Extraction - extract data from a data source.

• Internal Queuing - store the transaction information in memory.

• Applier - apply the data to a target data source.

The remaining three components support the stage processing model:

• Filters - enable modification of the transaction stream.

• THL Management - store and manage the THL.

• Finite State Machine - manages the replicator processing state.

We will take a brief look at these components before digging into specific details.

Extractors
When reading data from a source database, the entire process needs to be coordinated
and managed. The replicator must know where the data was extracted from, how to con-
tinue extraction in the event of a pause or restart of the replicator, and how to manage the
source system so that the log, state and progress can also be managed.

The current list of available extractors:

• MySQL, including Oracle MySQL, Percona MySQL, open source and commercial

• MariaDB

• Amazon RDS MySQL

• Amazon Aurora

13

Tungsten Replicator: How It Works

The role of the extractor is to take the data from the source system and resolve that data
into a transaction to be stored within the THL. This process is critical to get right because
the information must be extracted and stored in such a way that the data can be perfectly
reproduced on a target system, whether the target system is the same database as the
source or a completely different database and environment.

For example, when reading from a transactional database the information can be extracted
as a statement (if we know it's being applied to an identical system), or as row-based data if
the target database is unknown. If the data is a completely different format, then it must be
extracted in a way that enables it to be reconstituted. This may also require extracting ses-
sion-based information, variables, settings, and even column names and primary key data.

Internal Queuing Mechanism

The replicator has to move data between stages and also make that data available to dif-
ferent components. For convenience, this is handled by placing the stream of transactional
data into an internal queue. The role of the queue is to provide a cache and buffer the data.
This is used both to provide the information to other replicators over the network, and to
provide a ready list of transactions to be written to disk or applied to a target database.

Because the replicator is designed to operate at such a high rate of speed, it cannot rely
on continually reading information from disk only when the next stage of the pipeline has
finished processing an item. In order to process the data so quickly, the internal queue is
always kept primed with new transactions, and this operation happens in the background,
independent of the extraction or apply process. The internal queue can also provide a
useful staging area for performance filtering without interrupting the core extraction or
apply process.

Components

14

Tungsten Replicator: How It Works

Appliers
The appliers take the incoming stream of transactions and apply that information to the
target database or system. Like the extraction process, the role of the applier is to translate
the architecture and database neutral format of the THL into a suitable target structure.

For example, when replicating row-based information to a transactional JDBC target,
the data must be reconstructed into a suitable INSERT statement. But when applied to a
document-based database, such as MongoDB, the data must be converted into a BSON
document. The applier is entirely responsible for this process of translating the information
into the correct format, and ultimately writing the data to the target.

As part of the transactional nature, the applier component is also responsible for ensuring
that the data has been correctly written and that it is safe to mark that transaction as repli-
cated, which enables the replicator to proceed with the next transaction.

Filters
Filters enable data within the stream of transactions to be changed. Filters perform modifi-
cations to each transaction as the data moves through each stage of the replicator. A filter
can add information or data to a transaction, it can modify the data in a transaction, or it can
filter and remove the transaction entirely from the data stream.

One or more filters can be associated with each stage. The filter mechanism, although part
of the stage and transaction stream, effectively sits outside the overall process since there
can be multiple filters and even multiple instances of the same filter on each stage.

THL Management and Storage
All data that is extracted from a data source or that is applied to a target database must
have been stored in the THL format. A THL management component provides both the
mechanism for translating the information into the THL format, and the method for serial-
izing that information so that it can be stored on disk or exchanged over the network. For
an Applier replicator, the information also needs to be read from disk for those occasions
when the Extractor replicator is unavailable.

For the information stored on disk, the THL manager not only serializes and deserializes the
transactions between the in-memory queue and on-disk representation, it also manages
the THL files. Services can be configured so that THL is automatically removed after a set

Components

15

Tungsten Replicator: How It Works

period of minutes, hours or days, but the THL is only removed if it has been successfully
applied.

From version 7.0 of the Tungsten products, THL can also be compressed and/or encrypted
both in flight and on disk.

Finite State Machine (FSM)
The finite state machine (FSM) is the component that manages the execution of the pipe-
line and the replicator as a whole. The FSM has been designed so that a replicator service
is always in a known, single, fixed state, and that the existence of an active state helps to
define and identify the current state of replication itself.

The FSM manages these states and each service will either be in the active state, or transi-
tioning to or from that state. There are two primary states:

• Online - the replicator is actively extracting data from a source or applying data to
a target.

• Offline - the replicator is idle.

All movements between the different states, for example transitioning from offline to online
are executed on the boundary of a single transaction. Therefore, as described earlier in this
document, a single transaction is either entirely processed (and committed) or the process
fails. This state based model ensures the status, and progress, of the replication is known
and identifiable at all times.

Within the two major states, there are a number of different sub-states, which either define
a transition or identify further information about the current state. For example:

• Going-Online:Synchronizing - indicates that an Applier replicator is waiting for the
Extractor replicator to come online.

• Going-Online:Provisioning - indicates that an Extractor replicator is extracting data
from a Source before replicating change data.

• Offline:Error - indicates that replication has failed due to a replication error.

These states are vital to the operation as they both indicate the state and available next
state or step in the process.

Components

16

Tungsten Replicator: How It Works

THL and Data Management

Transaction History Log (THL)
The transaction history log (THL) is the core data exchange component within the repli-
cator. All data extracted is written to THL, and all data applied is converted from the THL
format into the native format of the target database.

THL has been specially designed to be as flexible and adaptable as possible to store the
required information, while remaining as format- and architecturally- neutral as possible. The
role of the THL is store the information extracted from a database in such a way that it can
be perfectly replicated on a target system, regardless of whether the target system is the
same as the source, or different. As described elsewhere in this document, the role of THL
is to store a representation of the data without knowing what the target database environ-
ment or system is.

The major features of the standardized THL environment are:

• Identification of each transaction with a unique ID (seqno).

• Correlation between the unique ID and an identifiable extraction point from the
source database.

• Ability to store metadata and change data.

• Architecture neutral storage format. The data is recorded in a way that handles
big-endian/little-endian differences, and the data can be replicated between
different architectures without loss or corruption.

• Transactional semantics are not lost. Data is always stored on a transaction-by-trans-
action basis.

• Data can be split across multiple files.

• Data can be split across multiple fragments in the transaction.

The THL consists of only one block of the first three items, and one or more blocks of
the transactional data. Keep in mind that a single transaction may consist of one or more
updates to one or more tables or schemas. Although the management and header infor-
mation is the same for the entire transaction, the transactional data may consist of one,
hundreds, or even thousands of statements or rows of data.

The size of an individual THL event is dependent on the size of the transaction, and for
reasons of size, verification, checksums and overall size management, a single transaction
may be split into one or fragments.

17

Tungsten Replicator: How It Works

The thl command-line tool provided with Tungsten Replicators allows you to see the raw
THL information. For example, here's the output from a statement-based THL event:

SEQ# = 7 / FRAG# = 0 (last frag)

- FILE = thl.data.0000000001

- TIME = 2022-07-11 10:59:49.0

- EPOCH# = 1

- EVENTID = mysql-bin.000016:0000000000002162;93

- SOURCEID = ext01

- METADATA = [mysql_server_id=101;dbms_type=mysql;tz_

aware=true;service=alpha;shard=demo]

- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent

- OPTIONS = [##charset = UTF-8, autocommit = 1, sql_auto_is_null

= 0, foreign_key_checks = 1, unique_checks = 1, sql_mode =

'NO_ENGINE_SUBSTITUTION,NO_AUTO_CREATE_USER,ONLY_FULL_GROUP_

BY,STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ZERO_DATE,NO_

ZERO_IN_DATE', character_set_client = 33, collation_connection =

33, collation_server = 8]

- SCHEMA = demo

- SQL(0) = insert into sample1 values (1, "Test Message")

THL and Transactional Headers
The core of the THL is the structure of the transaction and additional metadata and environ-
mental information that goes along with it. This header information exists for all transactions,
regardless of the underlying transactional data. In the previous example, the first four lines
contains the THL header:

SEQ# = 7 / FRAG# = 0 (last frag)

- FILE = thl.data.0000000001

- TIME = 2022-07-11 10:59:49.0

- EPOCH# = 1

The header first defines the THL sequence number (7 in this case), and the fragment, along-
side whether the fragment is the last for this transaction. The file represents the THL log file
for this entry. The time is the original time the transaction was committed to the source data
store, and the EPOCH number is used as a validation check to ensure the THL is from the
same Source.

- EVENTID = mysql-bin.000016:0000000000002162;93

- SOURCEID = ext01

THL and Data Management

18

Tungsten Replicator: How It Works

The next section contains information about the source data, the EVENTID and the
SOURCEID. EVENTID is the data store reference from where the information was loaded. In
the example above, we show the MySQL binary log file and byte position within it where
this transaction started. The source ID is usually the hostname.

Metadata
The metadata portion within the THL contains information about the database environment
in which the data was extracted. The information is represented as a list of key/value pairs.
From the example, information about the MySQL server, include the ID, whether time zones
had been configured, and the database type have been recorded.

- METADATA = [mysql_server_id=101;dbms_type=mysql;tz_

aware=true;service=alpha;shard=demo]

The metadata in this section is common to the transaction as a whole and is most often
used to store information about the source and any processing that may have occurred.
The replicator also uses this area to record whether the data has been filtered or modified
in some way, for example, by adding primary key information, column data, or other set-
tings.

Transactional Data
The actual transactional data is contained within the final block and the exact format
depends on whether the information was extracted as a statement or row-based statement,
or a combination of the two. A single transaction, and THL event, could consist of multiple
SQL statements and ROW events. For all statement and row events, the schema is always
recorded outside of the actual transaction data. For row-based events, the information
contains both schema and table information.

Statement-Based Events
For statement-based events, the transactional data contains the information required to
execute the same statement from the source database on the target database. At the
current time, MySQL to MySQL deployments are the only environment in which statement
based replication is supported.

THL and Data Management

19

Tungsten Replicator: How It Works

The information contains within a statement block includes the statement environment, and
the DML statement that generated the data change. For example:

- OPTIONS = [##charset = UTF-8, autocommit = 1, sql_auto_is_null

= 0, foreign_key_checks = 1, unique_checks = 1, sql_mode =

'NO_ENGINE_SUBSTITUTION,NO_AUTO_CREATE_USER,ONLY_FULL_GROUP_

BY,STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ZERO_DATE,NO_

ZERO_IN_DATE', character_set_client = 33, collation_connection =

33, collation_server = 8]

- SCHEMA = demo

- SQL(0) = insert into sample1 values (1, "Test Message")

There are multiple SQL statements; the MySQL database environment settings such as
whether auto commit has been enabled, and the SQL mode supported. This information
has all been extracted verbatim from the information written into the MySQL binary log.

The actual DML statement is in SQL(0). Multiple statements would have their own SQL and
OPTIONS blocks.

The benefit of statement-based replication is that the size of the replication is much smaller,
and therefore requires less time, less disk, and less bandwidth. Statement-based cannot
replicate data to non-MySQL platforms as the statements cannot be rewritten for different
targets, nor applied to non-SQL or transactional systems.

Row-Based Events
With row-based events, the information stored is more descriptive and substantial than
with statement-based events. This is because the actual data, rather than the statement that
generated the changes, is stored in the THL. The changes are recorded, including both the
operation type (i.e. INSERT or UPDATE) and the data itself. Additionally, because a single
transaction could consist of many changes of each type into a number of different tables
and schemas, each individual operation needs to be recorded as a separate block, one for
each table updated.

The following information can be stored for each row entry:

• Index (position within the original row)

• Column name

• Column data type

• Length of datatype (for character or binary fields)

• Unsigned (for numeric values only)

• BLOB type (which typically requires special handling)

• Description

THL and Data Management

20

Tungsten Replicator: How It Works

For example:

SEQ# = 8 / FRAG# = 0 (last frag)

- FILE = thl.data.0000000001

- TIME = 2022-07-11 11:07:44.0

- EPOCH# = 1

- EVENTID = mysql-bin.000016:0000000000002440;-1

- SOURCEID = ext01

- METADATA = [mysql_server_id=101;dbms_type=mysql;tz_

aware=true;service=alpha;shard=demo]

- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent

- OPTIONS = [foreign_key_checks = 1, unique_checks = 1, time_zone

= '+00:00', ##charset = ISO-8859-9]

- SQL(0) =

 - ACTION = INSERT

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - COL(1:) = 2

 - COL(2:) = Row Test Message

Technically row-based information is actually stored in two separate blocks, called the
row-values and the row-keys. This is a misnomer, because the row-values are the new
information for the row, while the row-keys are the old information. That is, for an UPDATE
event, the key-values contain the version of the row before the update, and the row-values
the version after the update has been completed. The old data is required to do a look-up
on the information to ensure we are updating the correct row if no primary key is provided.

These two sides of the row-event data can be used according to the different operations.
An INSERT contains only row-values (new data), UPDATES contain both, and DELETES contain
only key-values, the values required to lookup the correct row to be deleted.

This can be seen in the example below where a different block of row changes has been
recorded for three separate tables.

THL and Data Management

21

Tungsten Replicator: How It Works

- SQL(0) =

 - ACTION = INSERT

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - COL(1:) = 3

 - COL(2:) = New Test Message

- OPTIONS = [foreign_key_checks = 1, unique_checks = 1, time_zone

= '+00:00', ##charset = ISO-8859-9]

- SQL(1) =

 - ACTION = UPDATE

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - COL(1:) = 2

 - COL(2:) = Updated Row

 - KEY(1:) = 2

 - KEY(2:) = Row Test Message

- OPTIONS = [foreign_key_checks = 1, unique_checks = 1, time_zone

= '+00:00', ##charset = ISO-8859-9]

- SQL(2) =

 - ACTION = DELETE

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - KEY(1:) = 1

 - KEY(2:) = Test Message

The use of row-based events and extraction is what enables the heterogeneous function-
ality within the replicator. Because the information has been represented as raw data, it is
possible to take the information and reproduce it on a target database irrespective of the
target environment or data structure and interface. For example, when applying to a JDBC
target an INSERT INTO statement can be constructed with the right fields and values. For
an update, an UPDATE statement. For this to operate correctly, the replicator on the applier
side must get metadata from the target database to understand the target fields so that this
information can be used to construct the statement.

There are some useful side effects of this process that can be taken advantage of:

• The target database is not required to have an identical structure, providing the
information can be written into the target.

• The table type could be different, for example within MySQL a table could be
InnoDB or TokuDB, enabling migrations.

• Character sets could be different (if compatible).

THL and Data Management

22

Tungsten Replicator: How It Works

• The size and definition of fields does not have to be identical. Data could be repli-
cated into larger fields, or TEXT or BLOB in place of simple CHAR or VARCHAR.

• Indexes could be different.

• Order of fields could be different, or there could be more fields on the target than
the source.

All of the above differences are possible without needing the filtering mechanism within the
replicator to perform any changes. Instead, just the use of row-based extraction provides
this functionality because of the way the data is ultimately applied into the JDBC targets.

When applying to a document-based database, the values can be assembled into the
target document structure, such as JSON or BSON document. This flexibility enables the
data to be effectively formatted or applied into the target database irrespective of what
that structure or environment is like. However, using row-based events for heterogeneous
apply into non-JDBC targets requires some changes to the structure of the information.

To understand that, let's look at the structure of the individual row events within the THL…

Row-Based Inserts
A row-based insert contains the information to be inserted into the record. In most cases, it
is the raw information and consists of a list of all the fields in the source table and what data
was inserted. If the information was NULL or not defined, this is also represented:

- ACTION = INSERT

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - COL(1:) = 3

 - COL(2:) = New Test Message

Note how the information stored here does not contain column name information. For JDBC
targets this information is not required if the data is in the same order on the source and
target tables.

However, when applying to heterogeneous targets, the column name can be useful and
even required. For example, when replicating to a document-based target the column
name is required so that the field name within the document is available.

Also note that there is no index or primary key information. Again, for JDBC this is often not
required for a simple insert, but a document database or message system like Kafka uses
the primary key information to identify the document or message ID.

THL and Data Management

23

Tungsten Replicator: How It Works

Depending on the data source on the extraction side, this information may be needed or
required when applying to heterogeneous or batch targets. On MySQL, the column name
and primary key information must be separately updated within the THL using filters.

The result is THL that contains the column names and the key portion of the row update
now explicitly contains the list of primary keys:

- ACTION = INSERT

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - COL(1: id) = 3

 - COL(2: msg) = New Test Message

 - KEY(1: id) = NULL

Note the actual value is not populated in the 'key', instead it is just a placeholder to identify
which column(s) are the primary key.

Row-Based Updates
As noted earlier, a row-based update operation contains the old values of the incoming
data before the update (in the key-values) and the new data (in the row-values):

- SQL(1) =

 - ACTION = UPDATE

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - COL(1:) = 2

 - COL(2:) = Updated Row

 - KEY(1:) = 2

 - KEY(2:) = Row Test Message

Using this information, it should be possible to use the old values to lookup the row in the
target database and then update it with the new data.

It's possible with the combination of information to either model a version of the old row
of data, or the new row of data. Even if the incoming row only contains changed fields, an
entire version of the record can be reconstructed by merging the old and changed data
together.

However, in a heterogeneous applier this is inefficient, and for batch appliers, unworkable.
Performing full lookups across a target table or environment could be expensive. Instead,

THL and Data Management

24

Tungsten Replicator: How It Works

the primary key and column name filters are enabled on an extractor used for hetero-
geneous replication, and the key-values information is used to indicate the primary key
information which is then used as the more efficient lookup value.

Row-Based Deletes
For a delete operation, only the data to be deleted is recorded, that is, the old data required
to lookup the row:

- SQL(2) =

 - ACTION = DELETE

 - SCHEMA = demo

 - TABLE = sample1

 - ROW# = 0

 - KEY(1:) = 1

 - KEY(2:) = Test Message

Thus, only the key-values of the THL are populated.

Again, for a true heterogeneous replication environment this information becomes the
primary key lookup data.

Immutability
Extracted THL cannot be modified or altered in any way. Once the data has been extracted
and written to disk, the THL is considered immutable. The THL therefore becomes an exclu-
sive record of the transactions from the source system.

The only way that data can be modified is during the replication stream inside the pipeline
stages. This means that data can be extracted from a source database and recorded into
the THL without any modifications, then used as the source data to be applied to a variety
of targets where the content and data can be filtered or changed to suit the destination
environment.

Thus, THL extracted from MySQL can be written directly to a MySQL Target to create a
perfect copy, while being modified during replication into Kafka to filter out tables not
needed, and modifying data to be compatible with the target Kafka queues. The original
source material stays in place with the changes only occurring within the applier replicators.

The role of the THL in this case is that it can act as a canonical reference source for the
information extracted. The immutability however does mean that if additional information

THL and Data Management

25

Tungsten Replicator: How It Works

or data is needed, it must be added by the replicator performing the extraction before the
THL is written to disk.

For example, for heterogeneous targets, the THL must have the column name and primary
key information added to the THL before the data is written to disk. There is no other source
for this information than the source database used during extraction.

Storage
Storage of the THL information on disk is organized as one or more files; each file contains
one or more transactions, dependent on the transaction size and the configured size of the
THL files. For example:

-rw-rw-r-- 1 tungsten tungsten 100001626 Jul 11 12:09 thl.

data.0000000001

-rw-rw-r-- 1 tungsten tungsten 100000669 Jul 11 12:11 thl.

data.0000000002

-rw-rw-r-- 1 tungsten tungsten 21259541 Jul 11 12:12 thl.

data.0000000003

This can be compared to the THL index showing the sequence numbers for each file:

LogIndexEntry thl.data.0000000001(0:6757)

LogIndexEntry thl.data.0000000002(6758:75472)

LogIndexEntry thl.data.0000000003(75473:93251)

The size of the THL files can be managed to allow for differences in the storage environ-
ment and properties, and also to cope with transactional sizes and potential recovery
scenarios. Transactions are not split across THL files, as this would increase the potential for
corruption if only partial THL files were distributed.

THL files are also self-managed by the replicator using a simple expiry mechanism. For
example, if the expiry is configured for five days, THL files are deleted once the last transac-
tion in them is more than five days old.

The expiry works differently depending on whether the replicator is an extractor or an
applier:

• On an extractor, the expiry always operates and deletes THL files accordingly.
This happens whether or not a downstream applier replicator has transferred the
content.

• On an applier, the files are only deleted if the data has been applied to the target,
in conjunction with the expiry setting. For example, if the replicator is ten days
behind, but the expiry is set to five days, no THL will be deleted.

THL and Data Management

26

Tungsten Replicator: How It Works

THL can also be viewed and manually purged, but the purging can only take place at the
beginning or end of a given file, a single event cannot be removed from the middle of a
given THL file.

THL Position
The replicator is able to stop, start, and reset the position from which replication takes place,
whether this is during the process of extraction or applying data. For any replicator, the
information is stored within a suitable structure usually within the source or target database.
This helps to retain transaction consistency and ensure that the database extraction and
target apply are in sync with each other. For example, on MySQL the position is recorded
within a tracking table within the database, called trep_commit_seqno. This table contains
both the seqno and extraction position.

The replication position is recorded within the THL as the EVENTID, and is then associated
with the THL sequence number. The replicator always stops on a transaction boundary, i.e.
a single THL sequence number. In MySQL, the extraction position is the binary log file and
byte position within that file.

Once this information is stored within the THL, the replication can be paused, or go offline,
or stopped altogether by recording the THL sequence number in the corresponding track-
ing table. When the replicator is placed online, or restarted, the same table is consulted and
used to identify the restart position.

However, because this information cannot always be relied upon, a logical sequence of
sources is used to determine the position.

On the extractor, the semantics are:

• Consult the stored event extraction position in the source database table and use the
stored EVENTID.

• Check the THL stored on disk and find the EVENTID in the last stored transaction.

• Start extracting with the current source database position (binlog or SCN).

This ensures that even if the source database-tracking table has been removed or cor-
rupted, then the extraction can continue from a known reference point.

For an applier, the position is computed slightly differently because the source of the infor-
mation is not the same. The sequence number, rather than extraction position, is used as the
point of reference:

THL and Data Management

27

Tungsten Replicator: How It Works

• Consult the stored position (EVENTID) in the target database-tracking table and get
the associated sequence number (seqno).

• Check for the sequence number in the stored THL and request the next THL posi-
tion from the upstream Extractor replicator.

• Request the first stored sequence number from the remote Source.

For verification purposes, when requesting THL from an Extractor, if the information is
known from the stored position table, then the EPOCH, or sequence number when the
Extractor went online, is used to verify that the THL source and stored THL match.

Should it be necessary, the extraction or apply position can be explicitly modified and set
before the replicator is placed online, which allows for recovery or replay scenarios.

THL and Data Management

28

Tungsten Replicator: How It Works

Extraction From MySQL
MySQL is the primary source and target for the Tungsten Replicator. MySQL supports the
generation of a binary log. This is a sequential list of the individual transactions and cor-
responding transactional data written to the MySQL server in sequence. Because MySQL
generates this information in the order of the events being written, it is possible to replay
and reapply the individual transactions on a target MySQL server and reproduce the data
originally applied to the source server.

Architecture
The architecture of the MySQL binary log extraction is actually very simple. The binary log is
a sequential list of transactions from the source database, and so it is already a good source
of information. All the replicator needs to do is parse the content of the binary log and
translate the information into THL.

Fortunately, the MySQL binary log is a sequential list of changes, and so each transaction
stored within the binary log is read and extracted as a single transaction to be stored within
the THL. This results in a one-to-one relationship between the stored transaction within the
binary log, and a stored transaction with the THL.

The process of reading the binary log content is constant. Of all the available extraction
methods, MySQL is probably the easiest to understand because it is a simple one-to-one
mapping of the source recorded transactional information and the transactions recorded in
the THL.

Reading the Binary Log
Reading from the binary log by the replicator is a simple process of tailing the end of the
log file looking for transactions that can be extracted and translated into THL. The process
of reading the log is a constant stream, always waiting for new writes and extracting and
reading the new transaction as quickly as possible.

Positional information (the binary log filename and byte position within the log file) is used
as the reference point for reading data. This position is attached to each THL sequence
number so that replication can gracefully stop and restart reading at the correct position.

Reading the binary log from disk has some advantages over reading the data through
other methods. The primary benefit is that the information can be read directly without
requiring the database to be running or active, and without requiring any additional load

29

Tungsten Replicator: How It Works

on the source database. It also means that if the database fails, the replicator is still able to
read fully committed transactions on disk. Since the replicator is a key part of the Tungsten
Clustering product, such considerations are vital to ensure the switches and failover work
correctly.

Reading from disk also has the benefit that in a fully running and operational system, the
data written to disk is likely to still be within the operating system disk cache, and is there-
fore available in memory instead of via an expensive disk read.

The content of the binary log contains full transactional information, recorded as either
statement-based or row-based events. In MySQL, transactions are recorded within the
binary log according to a combination of the settings and the type of statement.

Three modes are supported:

• Statement-based logging, which records the original SQL statement executed.

• Row-based logging, which records the row-based changes that resulted from an
executed statement.

• Mixed logging, which uses the most efficient/data-integrity-safest operation
depending on the original executed statement.

This is ultimately stored and represented within the binary log as a row or statement based
operation, tagged against the schema and table information.

Metadata and Environment
The content of the binary log contains information both about the transaction and the
environment in which the statement was executed. This includes active SQL modes,
environment variables, timestamp and other data required when the statement would be
re-executed on the Target MySQL node. This metadata environment is required because
these values have the potential to change the operation, i.e. the SQL mode could change
the way MySQL reacts to data types or failures.

By looking at the raw MySQL binary log and the THL generated, it can be seen how the
metadata and environment for the transaction are recorded and stored so that replication
can be achieved on another MySQL target.

An example raw MySQL binary log extract can be seen below.

SET TIMESTAMP=1657537809/*!*/;

SET @@session.pseudo_thread_id=95/*!*/;

SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0,

@@session.unique_checks=1, @@session.autocommit=1/*!*/;

SET @@session.sql_mode=1436549152/*!*/;

Extraction From MySQL

30

Tungsten Replicator: How It Works

SET @@session.auto_increment_increment=1, @@session.auto_

increment_offset=1/*!*/;

/*!\C utf8 *//*!*/;

SET @@session.character_set_client=33,@@session.collation_

connection=33,@@session.collation_server=8/*!*/;

SET @@session.lc_time_names=0/*!*/;

SET @@session.collation_database=DEFAULT/*!*/;

Below is the corresponding content within the THL metadata:

- METADATA = [mysql_server_id=101;dbms_type=mysql;tz_

aware=true;service=alpha;shard=demo]

- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent

- OPTIONS = [foreign_key_checks = 1, unique_checks = 1, time_zone

= '+00:00', ##charset = ISO-8859-9]

Local and Remote Reading
The binary log is an artifact that exists and is generated by the MySQL server for the pur-
poses of replay/backup and replication. As such, native replication within the MySQL server
is provided by generating the binary log on the Source, then sending the generated log
content over a network connection to a Target MySQL server.

The preferred mode of extracting data from MySQL is to read the binary log files directly,
but the replicator is also capable of connecting to the MySQL server as a replication client,
reading the binary log remotely in the exact same fashion as a native MySQL Target.

This allows the replicator to operate either by reading the files directly or by reading them
entirely remotely over a network. This can be used in situations where direct reading is not
supported or allowed to due to tighter security situations, or in environments where direct
access to the MySQL server is available, such as Amazon Web Services RDS/Aurora deploy-
ments.

Binlog Management
In most situations, the replicator will avoid making modifications or changes to the way that
MySQL manages and organizes its binary logs. This means that operations such as flushing
logs, switching binary logs, or purging old logs continues to be handled by MySQL.

However, there are situations when the replicator must manage the binary logs to ensure
the integrity of the data, particularly when the replicator is operating within a Tungsten

Extraction From MySQL

31

Tungsten Replicator: How It Works

Clustering environment. For example, during a switch operation inside the cluster, a new
MySQL binary log can be triggered in order to speed up the process of identifying the
correct replication point.

The replicator can also stop, start and reconfigure native replication in order to assist in the
identification of the start position to ensure that the binary log and THL information match,
particularly during role or THL changes.

Because all of these operations are normally only allowed within a privileged environment
on a server where the Tungsten user has SUPER privileges, binlog management can be
disabled. This allows effective, albeit limited, operation in AWS RDS/Aurora environments
where SUPER privileges are not supported.

Extraction From MySQL

32

Tungsten Replicator: How It Works

Applying to JDBC Targets
JDBC targets are comparatively easy to apply data to because JDBC has a standardized
method for applying data built around the semantics of a typical SQL statement. Applying
into such a target is therefore a case of reconstituting a statement that will perform the
corresponding action. Because the JDBC interface works within the transactional basis,
reproducing the source transaction on the target is straightforward.

Beyond the basics of developing the statement to be executed, the other consideration is
building the environment in which the statement should be executed, and then recording
the transaction and replication state.

Architecture

The basic architecture of applying to a MySQL target is to connect to the database using
a JDBC connections using the appropriate JDBC driver, build a suitable statement, and
then apply the required statement and operation to the database as part of each incom-
ing transaction. Building a suitable JDBC statement is relatively easy, since it is possible to
create templated forms of the appropriate statements and to fill in the necessary fields. For
example:

33

Tungsten Replicator: How It Works

For an INSERT operation:

INSERT INTO table (collist) VALUES (values)

For an UPDATE operation:

UPDATE table SET column = value WHERE column = oldvalue

For a DELETE operation:

DELETE table WHERE column = value

In addition to the construction of a suitable statement, the replicator creates the environ-
ment in which the statement should be executed (i.e. setting auto increment values, time
zone and other settings). The applier also stores the current status information into the
appropriate tracking table.

Thus, the typical database applier process is:

1. Start transaction (BEGIN statement).

2. Build the database environment and settings to enable the transaction update.

3. Execute statement or rebuilt ROW statement to target database for each row of the
course database.

4. Commit the transaction (COMMIT) statement.

5. Record the progress into the trep_commit_seqno tracking table on the target
node.

This process is repeated on a transaction-by-transaction basis.

In addition to the basic process, building and deploying an applier for each environment
requires supporting the following elements:

• Build the basic templates for the INSERT/UPDATE/DELETE statements. Although the
basics are the same for all databases and environments, minor differences in ele-
ments such as the WHERE clauses, table, column and other definitions all require a
slightly different format.

• Configure the methods for specifying rows, columns and schemas. For example,
some databases use a period to separate a schema and table while some use an
underscore.

• Configure the commands and settings to configure the environment for executing
the statement. In MySQL, this is supported through SET statements, but others may
use functions or stored procedures.

• Configure the nomenclature and commands required for handling transactions.

• Set the table definition, format, and update semantics for the trep_commit_seqno
tracking table and other management tables used by the replicator to monitor and
control replication.

Applying to JDBC Targets

34

Tungsten Replicator: How It Works

The exact tools, methods and operations for a typical JDBC applier are common, although
minor differences exist.

Applying to MySQL
MySQL is a special case when it comes to replication due to the fact that the MySQL extrac-
tion process reads and stores MySQL statements as well as MySQL row-based events. This
means that the exact method used to apply data into MySQL depends on the method and
storage format of the incoming data:

• If the incoming data stored within the THL is statement-based (and therefore from a
MySQL source), the statement can be applied directly to a MySQL database target as the
source MySQL statement that was executed on the Target.

• If the incoming data in the THL is a row-based event, the data is applied as a row-based
JDBC statement by building a suitable JDBC/SQL statement.

In a MySQL-to-MySQL replication topology, the replicator can extract and apply data
whether it had been recorded as statements, rows or in the mixed methodology supported
by the MySQL binary log. For non-MySQL targets, applying row-based events is based on
the JDBC SQL statement semantics.

The only other major facet of application of data within the MySQL environment is the
reproduction of the MySQL environment. As noted when the data was extracted on MySQL,
a huge range of environmental information is extracted from the MySQL binary log to
provide information and data about the SQL mode, auto increment, time zone, character
set etc. information.

All of this is recreated on the target during replication with the settings applied as efficiently
as possible. In a typical MySQL replication deployment, many settings are unlikely to be
changed regularly between statements or rows so the current settings and environment
are cached. In the event of a loss of a connection, or when bringing the replicator online or
during startup, the entire environment is recreated and set as a whole using the metadata
stored within the THL.

There are some additional benefits when applying to MySQL:

• Within MySQL-to-MySQL deployments, DDL statements are replicated and applied.
Therefore, table creation, column updates, etc. are all extracted and applied verba-
tim. This allows full replication of data comparable to the native MySQL replication.

• Row-based data-application can be optimized to improve performance. For
example, if changes have been made to the same table using multiple statements
within the course of a single transaction, this can be optimized into a single INSERT/
UPDATE/DELETE statement.

Applying to JDBC Targets

35

Tungsten Replicator: How It Works

When performing heterogeneous deployments and replication, the environmental meta-
data that can be shared and replicated is limited by what has been extracted and what can
be applied. Certain settings, such as time zones and character sets are supported, but non-
MySQL extraction will obviously not support the MySQL-specific SQL_MODES and other
settings, and so the default MySQL global settings are used instead.

Applying to Oracle & PostgreSQL
When applying data into Oracle or PostgreSQL, the source THL information is going to
be recorded as row-based events, since heterogeneous replications requires row-based
storage.

The process of applying the data therefore matches the basic JDBC target as outlined
above. The data is embedded into different statement templates and then executed as a
basic statement. Oracle and PostgreSQL support transactional semantics, and basic environ-
ment settings, and the status and positional data is stored within a table within the database
so that the state and transaction can be managed.

Parallel Apply

Due to the transaction support offered by JDBC environments, the replicator supports the
ability to apply data to JDBC targets in parallel, using multiple threads to separate the data
on a transaction-by-transaction basis using the active schema to apply the data, and then
making use of a round-robin thread apply basis.

Applying to JDBC Targets

36

Tungsten Replicator: How It Works

For example, given 6 sequential transactions within the source THL across four different
schemas, the data could be applied using three separate threads and applied as follows:

Transaction 1 (Schema A, Table A) applied on thread 1
Transaction 2 (Schema C, Table A) applied on thread 2
Transaction 3 (Schema A, Table B) applied on thread 1
Transaction 4 (Schema B, Table C) applied on thread 3
…

In order to protect transactional consistency and avoid transaction ordering and isolation
causing problems, the transactions are divided across the threads on schema boundaries.
This operates as efficiently as possible, while also ensuring parallel threads are not updating
the same schemas out of the original source order.

Thus, in the above example, transactions 1, 2, and 4 are applied simultaneously, even though
they are technically out of order from the incoming sequential transaction stream. This only
possible because the replicator can identify and prevent execution of updates that would
affect the same schema/table.

To further avoid problems, the replicator also monitors the apply progress and controls the
number of parallel threads being used during the apply process to prevent non-sequential
execution of transactions creating too much of a distance between each transaction. For
example, if your application updates multiple schemas, but there are more transactions
within one schema than others, one thread may end up 10 or 20 transactions ahead of the
next thread.

Ultimately, the replicator will attempt to throttle back the parallel threads and limit the drift,
although this reduces the performance gained.

When using parallel apply, the following aspects should be kept in mind:

• The number of schemas in your target database. If you have only one schema,
parallel apply will not help.

• The transaction load should be evenly distributed across all your schemas.

• The number of parallel applier threads enabled should be tuned to support the
maximum number of transactions of your target database, number of schemas,
and transaction load.

• Care should be taken with large or long-running transactions in single schemas
because it introduces larger separation between threads.

Finally, the replicator attempts to most efficiently handle and manage the process of going
online and offline, ensuring that transactions in mid-execution across multiple threads com-
plete properly. Each parallel thread has its own status and progress marker stored within the
apply table, and when adjusting the number of threads the table is consulted and 'con-
densed' into the reduced number of threads.

Applying to JDBC Targets

37

Tungsten Replicator: How It Works

Applying to Data Warehouse Targets
With Batch Loading
Data warehouse targets are databases that may support JDBC and may have traditional
row-based storage, but are usually optimized for column-based, rather than row-based,
storage. This means that inserts and updates are better optimized when loading larger
quantities of rows simultaneously. For this reason, the simpler single transaction-based
updates, especially if the transaction contains a small number of rows, are inefficient.

In many cases, it's possible to load thousands, even hundreds of thousands of rows in the
same period of time that a single row update could be made. Data warehouse targets are
also traditionally very bad at performing delete operations, since the role of a delete in data
warehouses is an anathema. However, since the replicator is responsible for replicating
data, including deletes, all source data operations must be applied into the target.

The solution to this problem is to batch multiple transactions from the source database
together into a single operation when it is applied to the target. This way, instead of apply-
ing only single rows, thousands of rows can be modified at one time. To further improve
the overall process, the size of the batches and the frequency can be controlled, and to
maximize the performance, the data is written to a file and imported, as data warehouses
are optimized for that process.

For batch loading to work, the source data must have a primary key, because in order to
perform updates each row in the data must be uniquely identifiable. Without a primary key,
it becomes impossible to accurately identify the data, and it also makes it difficult to identify
the individual rows within the change data so that inserts and deletes can be performed.

Architecture
The basic process is as follows:

1. Generate a batch file (using the character-separated format) containing the rows to
be inserted/updated/deleted.

2. Connect to the target data warehouse and import the file.

3. Combine the existing stored data (the base table) with the incoming data (the
staging data).

The first stage is exclusively handed by the replicator; the latter stages are normally handled
by the replicator, but rather than being handled directly, are in fact managed through a
JavaScript script, with the JavaScript environment forming part of the replicator applier
process.

38

Tungsten Replicator: How It Works

The use of JavaScript makes the batch loading very flexible, and easy to modify and adapt
for new targets without having to write new, custom, appliers directly within the replicator.
It also allows for a significant amount of customization for different areas of the process, i.e.
allowing copies of the change data, or custom imports.

The first step is to generate a file that contains the change data. A single file is created for
each table within each schema. This file has some specific characteristics:

• Each row is prepended with information about the row data, including the transi-
tion ID, operation type (insert, update etc.), and commit timestamp.

• It contains all the raw row data.

• In the default mode, it contains inserts and deletes as single rows. Updates are rep-
resented by two rows, a delete to remove the 'current' version of the information,
and an insert to add the new version of the information.

The generation of a file with these characteristics actually creates a very precise source of
all of the changes to a table that can then be used to track all of the updates. This could be
used for auditing or historical recording of database changes. But for the basic process, it
contains an effective list of all the changes.

For the loading process, the native CSV import is used to get the data into a staging table
where the record of all the changes is stored until it can be merged into a target table. At
this point, because we are batching updates, the CSV that has been generated may contain
multiple changes to the same row of data. How this is resolved is handled by the final stage.

The final part of the process is to perform a merging, or materialization, process. This
converts the list of all the transaction changes into the 'base' data, that is a targeted and
resolved version. This process is:

1. Select all of the rows in the staging table, and delete all the rows in the base table
marked to be deleted.

2. Insert the 'last' version of each row marked as an insert. The last version is the
one with the highest THL sequence number. If there are 10 changes to a single
transaction, the last change in a batch will always be the version of the row that
matches that transaction, because it was the active version at the time the row was
extracted.

Data is batched into the generated CSV files when written out according to two rules:

• The number of rows in the incoming stream.

• The period since the last transaction.

For example, you could set 10,000 rows and 30 seconds, and the transaction would be
applied to the target when either threshold is reached. So, if 10,000 rows were batched, but
only 1 second had elapsed, the transactions would be committed to the target.

Applying to Data Warehouse Targets With Batch Loading

39

Tungsten Replicator: How It Works

Obviously, this batching of information introduces a potential latency and delay for rep-
lication, since the interval could be as high as the period interval setting. In general, the
combination of the two settings should help to control the overall replication latency.

There are minor differences between different target data warehouses as to how this
process works, but the basic mechanics are always the same.

Applying to Vertica
When applying to HP Vertica, the JavaScript batch loading script handles the loading of
information directly into Vertica from the generated CSV files. The actual process is as
follows:

1. Generate a CSV file.

2. Connect to Vertica over JDBC.

3. Start a transaction.

4. Use the COPY command to import the CSV into a staging table.

5. Delete everything in the base table marked as a delete in the staging table.

6. Insert the latest version from the staging table of the data into the base table. This
uses nested SQL statements within Vertica to select the correct rows.

7. Commit the transaction.

With Vertica, the convenience of having a JDBC interface to the database makes it very easy
for the replicator to apply the data. The Vertica applier is probably the simplest and most
straightforward of the batch applier processes for this reason.

Applying to Data Warehouse Targets With Batch Loading

40

Tungsten Replicator: How It Works

Applying to Redshift
Amazon Redshift is a column-store optimized database that works and operates in a similar
fashion to Vertica, while operating entirely within the Amazon Web Services (AWS) cloud
environment. Within the replicator, the basic process is identical to Vertica, except that for
Redshift, the CSV file must be uploaded to Amazon's S3 storage service before it can be
imported into Redshift.

1. For Redshift, the process is therefore:

2. Generate a CSV file.

3. Upload the CSV file to S3.

4. Connect to Redshift over JDBC.

5. Start a transaction.

6. Use the Redshift COPY command to import the data from S3.

7. Delete the base table data.

8. Insert the latest version of the new data.

9. Commit the transaction.

For Redshift, due to the nature of the S3 platform, the process can be configured so that the
CSV data is kept and not deleted, so that you have a long-term history of all the database
changes. You can also configure it so that the data is imported into a long-term table.

Applying to Data Warehouse Targets With Batch Loading

41

Tungsten Replicator: How It Works

Applying to Hadoop
Apache Hadoop, and all the different flavors of Hadoop such as Cloudera or MapR, all
operate on a very similar basis. A clustered environment that supports a distributed file
system, HDFS, and a distributed computing processing platform that uses Map Reduce
process in order to parse the information stored.

Unlike most other traditional databases, the storage format for information on Hadoop is
generally a text (CSV or other) file rather than a specific format. This is because HDFS is an
append-only file system, which means that changes to files on disk are impossible, you can
only write a new version of the data and delete the old version.

For database replication, the replicator performs slightly differently with Hadoop in that the
replicator stops once the data has been stored within HDFS. The materialization process
is handled by a completely separate set of tools, because the Map Reduce nature of the
Hadoop environment, while efficient for very large volumes of data, can take seconds or
even minutes to complete. If the materialization was handled internally by the replicator, it
would also slow down the replication of the raw data. Instead, the replicator is dedicated to
getting the data into HDFS as quickly as possible.

For replicating into Hadoop therefore the replicator operates as follows:
1. Generate a CSV file.
2. Copy the generated CSV file into HDFS.

A separate tool operates using the Hive database environment to provide the materiali-
zation process. As a separate unit, it can operate on a different cadence to the replicator
applying the data into HDFS. This can be tuned so that specific tables are materialized at
different rates and frequencies. But it also means that the materialization process within
Hadoop can make use of the entire Hadoop Map Reduce environment. In a high-volume
situation, this means that hundreds of thousands of nodes can be used to merge the data
across many gigabytes or terabytes of data.

Applying to Data Warehouse Targets With Batch Loading

42

Tungsten Replicator: How It Works

Applying to Native Targets
The application of data to native targets requires different considerations and operational
processes than when applying to either JDBC or batch environments. Whereas JDBC and
batch targets are typically row-based databases that often support SQL and/or JDBC inter-
faces, native targets include databases and environments that may not use rows or SQL as
their interface.

However, native targets allow for the application of data into different types and forms of
database or storage mechanisms, which makes them practical if you want to apply data
into message platforms, or 'eventually consistent' NoSQL targets such as MongoDB.

Native targets have the following differences and considerations:

• Applying to a native target requires modification of the incoming data into a format
supported by the target. For example, translating the row-based information into a
document base, or message.

• Conversion of the information may be necessary to cope with differences in data
types. For example, dates, times, binary data.

• Transactional boundaries may be difficult to achieve, because not all targets
support ACID compliance.

The major underlying difference between native targets and both batch and JDBC targets is
that the information must be applied using the native API or interface to the target system.
We cannot use SQL or even batch-based methodologies - instead, the replicator has to
be explicitly adapted to support the new target. This means that for a native applier target
there is no common architecture; instead, the method and process for applying into the
target environment are entirely reliant on the target in use.

Applying to MongoDB
MongoDB is a document-based eventually-consistent database where data is represented
as a document - that is, a single representation of data where the information is stored as
a list of a key value pairs. Values can themselves be further key value pairs. Each individual
document is stored within a single database, called a collection, and each document is
identified by a unique document ID.

To apply the data into MongoDB, each incoming record is converted into a MongoDB
BSON document, which is similar the JSON format. Each document is identified using the
primary key if incoming data has one, or using a self-generated ID if not.

43

Tungsten Replicator: How It Works

Changes to the database are modeled as follows:

• An insert creates a BSON document and adds it to the document collection with
either the primary key or self-generated ID as the document ID.

• An update creates a BSON document with the new version of the information, and
replaces the stored version, either using the primary key as the document ID or by
performing a full table lookup using the old data as the search parameters.

• A delete removes the entry from the collection using the primary key as the
document ID or by performing a full table lookup using the old data as the search
parameters.

Applying data into MongoDB is often used as a method of storing cached data and effec-
tively replicating data into the target can be achieved with very low latency because the
data is updated instantly through the native applier and API.

Applying to Kafka
Kafka is a high-performance, distributed, message bus system. It can handle a high volume
of messages because the actual distribution of the message data is entirely distributed
across the cluster of the messaging platform.

The format of a Kafka message consists of:

Applying to Native Targets

44

Tungsten Replicator: How It Works

• A given topic name - this is used to separate different streams of information.
Within the replicator, the default topic name is derived from the incoming schema
name and table name.

• A message ID - this is an explicit reference for the message so that it can be identi-
fied if required. By default, the replicator uses a combination of the schema, table
and primary key information.

• The message content - Kafka sends ‘bare’ messages, in that the content is just a
payload to the message, but for interoperability JSON and other serialized formats
are used. The replicator translates the incoming data into a JSON formatted
message, with the data embedded into a metadata payload.

Unlike other targets, Kafka is not a database, and so when the data is replicated into Kafka
instead of inserting, updating and deleting data, the messages sent via Kafka are instead a
message that contains the change data.

For example, the following message is an example of one sent via Kafka with Tungsten
Replicator:

{

 "record" : {

 "msg" : "Hello World",

 "id" : "2384751"

 },

 "_source_table" : "msg",

 "_optype" : "INSERT",

 "_seqno" : "3194",

 "_committime" : "2022-07-11 13:21:32.0",

 "_source_schema" : "test"

}

Applying to Native Targets

45

Tungsten Replicator: How It Works

The meta data fields contain the schema, sequence number, commit time and other infor-
mation and the inclusion of this data can also be configured.

An update is represented like this:

{

 "_source_schema" : "test",

 "_committime" : "2022-07-11 13:22:09.0",

 "_source_table" : "msg",

 "_seqno" : "3195",

 "_optype" : "UPDATE",

 "record" : {

 "msg" : "Goodbye",

 "id" : "2384751"

 }

The replication works as follows:

• One Kafka message is created for each incoming row of data from the THL.

• All messages are tagged and identified with the source operation type, schema
and commit time.

Progress information, data and sequence number information is stored in Zookeeper, which
is a required component for Kafka deployments.

Applying to Native Targets

46

Tungsten Replicator: How It Works

Filtering
Within every stage within the replicator process it is possible to attach one or more filters.
Each stage executes the filters in the order defined, and different stages and operations
within the system can only operate and use certain filters. For example, you can only add
column name and primary key information to THL at the stage where the data is extracted,
because for the filter to operate it must have access to the source database.

The role of the filters and purpose of the filtering process is to allow for information to be
modified and altered according to the needs of the replication deployment in process.

Architecture
The filter process enforces the following rules on each filter:

• A filter only ever takes in a single THL event at a time, and only returns either the
modified THL event or nothing (to indicate the event has been removed).

• A filter can only operate on the THL and event information contained within it.

• A filter is unaware of the database where the data came from.

• A filter is unaware of the data in the database.

• A filter has access through JDBC where available to the source or target database.

• A filter has no concept of the replicator, pipeline or configured elements.

Although filters have to operate within these very confined environments, they are actually
very powerful:

• A filter can remove events from the THL.

• A filter can remove individual rows from a single THL event.

• A filter can modify the statement in an event.

• A filter can modify the row data within an event.

• A filter can add rows to an event.

• A filter can remove rows from an event.

• A filter can add or remove columns from rows in an event.

• A filter can introduce new events into the THL stream.

This means that filters can perform a huge variety of different tasks, but are best employed
when they are used to directly modify or alter the data within the THL event being filtered.
Augmenting, adding, or constructing new information within a filter is inefficient. For
example, a filter can modify the data within the THL, but it cannot change what information
was extracted.

47

Tungsten Replicator: How It Works

Although a filter has access to the underlying database, it would be expensive to use the
filter to add or augment information from the extracted data during replication, because
you would have to perform a database lookup. This means that a filter is an inefficient
method to use to emulate a typical Extract Transform and Loading (ETL) process.

Instead, filters should be used as a method to remove, simplify, or reformat the information
already contained within the THL so that it is practical or usable within its target environ-
ment.

For example, filters can be used to:

• Filter out schemas, tables, or even columns from individual tables to remove the
information so that it is not replicated.

• Change the format of data, for example translating strings into different formats,
changing dates into different date formats (EPOCH into DATETIME), or anonymizing
data.

• Appending additional information to data, such as source database names or
source hosts so that the data can be more easily filtered on the target.

Regardless of what the filters do, the role of the filter is always to change the streamed
information in the path of the replicator.

Filtering Points
Filters are applied within a stage within the overall pipeline of the replicator, and also within
different replicators. Some filters are only workable at some points, and other filters change
the data within the replication stream before the THL reaches the next stage:

• Filters operate within a specific stage in the replicator.

• Multiple filters within the same stage in a replicator operate in order.

The order can be significant both within the stage and across replicators. For example, a
filter that adds the column name information to the THL must have been executed before a
filter that removes data based on the column name - otherwise there is no way to identify
which column to filter.

The application of filters at different points also changes the nature of the THL, and it must
be remembered that THL, particularly on disk, is considered a canonical version of the THL
and transactional information. The role of the filter is to alter that transactional data to suit
the needs of the replication stream.

For example, adding a filter in the Extractor changes the THL for all downstream replicators,
which limits the flexibility. Using a filter on an Applier replicator at the point before it creates
its own local copy of the THL forces the THL on disk to be permanently changed, while

Filtering

48

Tungsten Replicator: How It Works

filtering/changing the data at the point of applying the data to the database enables you to
change the data only for the target environment, without affecting the THL stored on disk.

This is best understood by examining a number of different scenarios where filtering is
being used. For example, if the user wants to replicate data between two MySQL servers
separated by a WAN connection, filtering out tables that are not needed on the target
database.

One solution would be to filter out the tables within the Extractor replicator where the data
is extracted. This way the data is not in the THL stored on disk, and never transferred to the
downstream replicator. This has the following implications:

• Data transferred over the WAN will be reduced, thereby improving the replication
latency and time.

• Extracted THL is not suitable for DR purposes, since the THL will never contain a full
copy of the extracted data.

• Wanting to replicate filtered tables is impossible, especially historically, which could
present a problem if you need to add missing data from the already extracted data
stream.

Examining how this affects different THL filtering can be seen by examining how that affects
the THL data:

Host Stage Filter Affect Recommended Filters

Source Binlog-to-q
Modifies the data during

extraction

Filters that change/augment

the source data stream, such as

column names or primary keys

Source q-to-thl

Modifies the data before

it’s converted to THL

and stored on disk

Filtering, but only if you can

guarantee the tables or data will

not be required in the target

Target remote-to-thl

THL downloaded from

a Source before storage

on disk as THL

Removing schemas, tables,

columns

Target thl-to-q
THL before it moves to

the applier stage

Filters that modify the data or

structure of the THL. For example,

the filters used to reassign THL

events to shards for parallel

apply operate in this stage.

Filtering

49

Tungsten Replicator: How It Works

Host Stage Filter Affect Recommended Filters

Target q-to-dbms

Only affects

transactions/data as

written into the target

database/environment

Filters for modifying data

specifically for the target

database environment such as

changing data format/encoding

JavaScript Filters
The majority of filters within Tungsten Replicator are written in Java, as is the rest of the
Tungsten Replicator software, but the replicator also supports a JavaScript environment
based on the Mozilla Rhino implementation of the JavaScript engine. This allows for filters to
be written and executed using JavaScript.

The JavaScript environment has full access to the Java classes and objects that are exposed
through the replicator, which means that the filter can access and process the native Java
objects that make up the THL stream of data as exposed within the replicator.

The main benefit of the JavaScript environment is that it allows for very rapid filter develop-
ment, and also means that users can customize the filters to their own requirements.

Filtering

50

Tungsten Replicator: How It Works

About Continuent

Continuent, the MySQL Availability Company,
provides solutions for continuous operations enabling
business-critical MySQL & MariaDB database applications
to run on a global scale with zero downtime.

Established in 2004, we provide geo-distributed high
availability on-premises, hybrid-cloud, and multi-cloud
environments with our Tungsten Clustering and Tungsten
Replicator products. We also offer industry-leading,
24/7 MySQL & MariaDB support services to ensure
continuous client operations.

Our customers are leading SaaS, e-commerce, financial
services, gaming and telco companies who rely on us
to cost-effectively safeguard billions of dollars in annual
revenue, including Adobe, Carfax, F-Secure, Garmin,
Marketo, Modernizing Medicine, Samsung, Riot Games,
Stitcher, VMware and Vonage.

For more information on our products and services,
please visit www.continuent.com, email us at
sales@continuent.com or call us at (415) 529-4901,
and follow us on Twitter and Linkedin.

https://www.continuent.com/
mailto:sales%40continuent.com?subject=
tel://+14155294901
https://twitter.com/Continuent
https://www.linkedin.com/company/continuent/

	Introduction
	Basic Architecture
	Transactions
	Starting, Stopping, Restarting
	Replicator Roles
	Replicator Communication
	Replicator Management

	Components
	Extractors
	Internal Queuing Mechanism
	Appliers
	Filters
	THL Management and Storage
	Finite State Machine (FSM)

	THL and Data Management
	Transaction History Log (THL)
	THL and Transactional Headers
	Metadata
	Transactional Data
	Statement-Based Events
	Row-Based Events
	Row-Based Inserts
	Row-Based Updates
	Row-Based Deletes
	Immutability
	Storage
	THL Position

	Extraction From MySQL
	Architecture
	Reading the Binary Log
	Metadata and Environment
	Local and Remote Reading
	Binlog Management

	Applying to JDBC Targets
	Architecture
	Applying to MySQL
	Applying to Oracle & PostgreSQL
	Parallel Apply

	Applying to Data Warehouse Targets With Batch Loading
	Architecture
	Applying to Vertica
	Applying to Redshift
	Applying to Hadoop

	Applying to Native Targets
	Applying to MongoDB
	Applying to Kafka

	Filtering
	Architecture
	Filtering Points
	JavaScript Filters
	About Continuent

