
CONTACT
1957 Joseph Dr., Moraga, CA 94556

marketing@continuent.com

Real-Time DaTa loaDing
Into Hadoop

2

Real-Time Data Loading Into Hadoop

Table of Contents

Overview 3

Existing Migration Technologies 4

SQL Dump and Import 5

Sqoop 7

Talend Open Studio 9

Tungsten Replicator 10

How the Hadoop Applier operates 10

Replicator Extractor 12

Replicator Applier 13

Tungsten Replicator Topologies 16

Tungsten Replicator Summary 17

About Continuent 18

3

Real-Time Data Loading Into Hadoop

Overview
Big data and the use of big data solutions for the processing and analysis of customer and
logging data is increasing at a substantial rate. But whereas previously the analytical pro-
cessing of data was handled in an offline and often separate part of the data processing
process, Hadoop is now seen as an active part of the data flow. Rather than offline analytics,
Hadoop is playing an active role in the processing and provisioning of data directly to the
customer.

This presents a number of issues within the data exchange and migration process when
using existing toolsets. They rely on a highly manual, periodic and intermittent transfer of
information often closely tied to the previously non-interactive nature of the data transfer
process. For example, a periodic ETL workflow in the illustration on the right.

Because of this, data needs to be loaded into Hadoop not in intermittent batches, but
as an active database that sits alongside existing relational, NoSQL, and other databases.
This allows data to be actively and constantly exchanged between the different database
environments, ensuring consistency of the shared information. For example, using Tungsten
Replicator Real-Time Batch Loading, analytics data becomes available for use shortly after it
is written to the source database – see illustration below.

4

Real-Time Data Loading Into Hadoop

Existing Migration Technologies
There are a number of existing technologies that enable the dumping and loading of
information between MySQL and Hadoop. These different technologies apply different
techniques to achieve the loading process, and have different levels of compatibility and
effectiveness, depending on the use case, data use, and required update rate.

A number of existing data migration technologies are available:

• SQL Dump and Import – This process relies on using existing database tools or
custom scripts to extract and load data.

• Sqoop – A direct loading tool that exchanges information directly between
existing databases and Hadoop by performing SELECT and export techniques,
automating the core elements of the SQL dump and import approach.

• Talend Open Studio – A managed solution which makes use of the Sqoop con-
nector, Pig, direct HDFS writes, and other standard Hadoop components to build a
simplified extraction and migration interface using the Eclipse environment as the
front end. Although it simplifies the process by making it accessible to end-users,
Talend Open Studio has the same limitations as the base Sqoop tool.

Tungsten Replicator provides an alternative to these solutions based on an existing, well-
tested replication technology already used for both homogenous and heterogeneous
replication between MySQL (source or target) and Oracle, MongoDB, Vertica and other
database targets.

5

Real-Time Data Loading Into Hadoop

SQL Dump and Import

The simplest and most straightforward of the processes is to dump the information from
the database into a CSV file and then manually load that into Hadoop. Although this process
can be scripted, it can still be considered a manual, rather than automated, process. Even
automated, the process relies on performing a manual export by directly querying the
database.

The basic methodology for exporting data in this way is as follows:

Create a Comma Separated Value (CSV) file directly from within the source database envi-
ronment. For example, within MySQL this can be achieved by running a SELECT … INTO
OUTFILE statement, which generates a text file using the specified field and record delim-
iters.

The statement:

SELECT title, subtitle, servings, description into OUTFILE

‘result.csv’ FIELDS TERMINATED BY ‘,’ FROM recipes

creates a file, result.csv, using the CSV format, selecting the specified columns into the
generated file.

The query can be simple, as shown above, or complex, for example involving joins and
selecting specific fields, columns and formatting as necessary, but the result is always a flat,
non-relational copy of the source data.

For more complex interchange file generation, a custom script or application can be written

Advantages
• Flexible data selection

• Custom formatting and extraction

• Does not require replication to be
enabled on the MySQL source

Disadvantages
• Incremental extraction requires database

or application level automation

• Requires additional database query
overhead for export

• Requires manual transfer

• Entire database or table requires iterative
process to read all data

• Requires read locks to ensure consistent
data snapshots

• Does not capture full change history,
only the difference between queries at
the point of export

Existing Migration Technologies

6

Real-Time Data Loading Into Hadoop

to reformat the information into the desired format. This method is frequently used where
the data needs further manipulation, or when data must be constructed into JavaScript
Object Notation (JSON) or other formats that are not supported natively by the database as
an export format.

Regardless of the method for generating the data content, the resulting file can then be
loaded into Hadoop by using the hdfs command-line tool to copy the CSV file from the
standard filesystem into HDFS:

$ hdfs dfs mkdir recipes

$ hdfs dfs -copyFromLocal recipes.csv recipes

Once the file has been imported into Hadoop, the data can be accessed and manipulated,
for example, by creating a suitable Hive table definition that accesses the file directly.

The manual export/construction process has some advantages, in that it enables the
maximum level of freedom in terms of the content and structure. However, the process
must be completed in its entirety each time the data needs to be updated and extracted.
Incremental changes are impossible without changing the underlying table structure to be
able to determine when changes were made to the corresponding tables.

Existing Migration Technologies

7

Real-Time Data Loading Into Hadoop

Sqoop

Sqoop is an open source tool that is provided as part of the standard Hadoop distribution.
Sqoop uses existing JDBC drivers to communicate and execute queries on existing data-
bases, including Oracle and MySQL, and then writes this table data directly into HDFS for
use by the rest of the Hadoop system. CSV and other formats are supported. As part of
Hadoop, it is open source and therefore easily audited and expanded.

Unlike the manual export and load process, Sqoop performs the entire export, format,
and import process for you. Entire databases or selected tables can be extracted from
the source database and written into Hadoop, and limited exchange of the information is
provided in the opposite direction, from Hadoop back into the RDBMS.

The major advantage of Sqoop is that it effectively solves the manual dump and export
solution by automating it as much as possible. The disadvantage is that Sqoop expects to
transfer data into the database in CSV format and the structure cannot be altered.

Using Sqoop requires supplying the JDBC connection string, including the database that
needs to be imported. In this case, all the tables from the specified database will be
imported in one operation:

$ sqoop import-all-tables --connect jdbc:mysql://192.168.0.240/

recipes

Sqoop performs the operation by running a standard SELECT statement on the source
table and then translating the raw row-data into CSV format, before writing this information
directly into HDFS. Tables are automatically partitioned into multiple files as they are written

Advantages
• Flexible data selection

• Automates transfer

• Simplified multiple table extraction

• Does not require replication to be
enabled on the MySQL source

Disadvantages
• Incremental extraction requires database

or application-level automation

• Requires additional database overhead
for query-based export

• Does not use explicit locking for data
consistency

• Requires explicit schema and if neces-
sary table selection; entire databases
with multiple schemas must be selec-
tively extracted

• Does not capture full change history, but
only the differences between tables at
the point of import

Existing Migration Technologies

8

Real-Time Data Loading Into Hadoop

to HDFS, allowing for larger tables to be effectively distributed across the Hadoop cluster.

Using an additional direct option, data is extracted and written concurrently to multiple
nodes in a given Hadoop cluster, increasing the speed of the transfer process.

Although Sqoop automates much of the basic transfer process, it is limited to extracting
the data from the source RDBMS using SELECT operations, which makes the extraction of
information an expensive process, particularly on very large tables. Whole table scans are
always expensive within any RDBMS environment, as they require increased CPU and disk
I/O to be processed.

Incremental extraction is possible with Sqoop, but only through a modification of both the
database structure and application to enable changed rows of data to be identified so they
can then be re-extracted and transferred to Hadoop. Two solutions are available: adding
a lastmodified column, which is then used as the reference point for further extraction; or,
using an append column which is used by the application to identify when an update or
insert procedure has taken place. Sqoop can also be configured to automate the incremen-
tal process by creating a ‘job’ that contains the last extracted data information during an
import:

$ sqoop job create nextimport --incremental append \

--check-column id --last-value 4336573 \

--connect jdbc:mysql://192.168.0.240/recipes \

--username root --table recipes

This creates a specification in the file ‘nextimport’ that can be executed during the next
update using:

$ sqoop job --exec nextimport

Sqoop simplifies much of the basic extraction and loading process, but achieves this by
performing client-application level table queries, requiring additional database query load
and without adding any benefits over the basic SQL dump and load process.

Existing Migration Technologies

9

Real-Time Data Loading Into Hadoop

Talend Open Studio

Talend Open Studio provides a GUI and suite of additional command-line tools that enable
complex data migration and integration so that information can be moved from one data-
base to another.

Using Eclipse as a front-end, Talend enables you to graphically draw data and information
flows between sources and destinations. The actual loading process from MySQL or Oracle
into Hadoop can be configured to make use of a wide variety of connectors, including
using Sqoop, using custom direct HDFS writes, or using an interface through the Pig data
transformation system within Hadoop to write and manage the flow of information.

Talend provides transfer of information by reading data from the existing database, or by
using the Change Data Capture (CDC) model to extract data from the source database and
then apply it. (The basic model for data migration is with fixed export from MySQL and
insert into the target system for processing.)

Talend is not designed for long-term, permanent replication of data, but single exports, and
periodic or regular exports of the information. Although it provides flexible output formats
and translation or morphing of the data stream during the transfer process, each one is
targeted at a specific existing dataset.

Talend is a flexible and capable product, but can be complex and long-winded to use, and
it relies on the single, repeated, transfer of data, rather than a constant out of band direct
replication of the information. This limitation also means that recovery and restarting from
errors is more complex.

Advantages
• Intermittent replication of fixed datasets

• Wide range of Hadoop interface targets
such as Sqoop, Pig and HBase

• Provides complex Export, Transform,
Load (ETL) support

• Open Source license

• Automates transfer

Disadvantages
• Incremental is supported in limited

methods

• Replication is not transfer safe, and
recovery requires reload, rather than
restart from position

• Heavy configuration required to identify
source and target formats

Existing Migration Technologies

10

Real-Time Data Loading Into Hadoop

Tungsten Replicator is an established commercial solution that provides an alternative to
native MySQL replication. Tungsten Replicator uses the MySQL binary log to extract and
identify data changes within the core MySQL database. Tungsten Replicator takes this
information, places the content into a Transaction History Log and provides a single, iden-
tifiable, sequence number (transaction ID) that enables the state of replication to be easily
identified. The sequence number also provides a convenient start/stop reference.

The core of Tungsten Replicator relies on two key services, the extractor, which extracts
data from a supported database (MySQL and its variants), and the applier, which writes data
into a supported database (e.g. MySQL, MongoDB, etc.). The data transfer between the two
systems is based on the THL format, and the flexible information and structure that it sup-
ports. The two sides of the system work together to provide replication between different
databases, even though the underlying database technologies may be different and have
different functionality and data transaction expectations.

The Hadoop applier operates within this model, taking the raw THL data, and applying it
into Hadoop, and then processing and merging the change information within Hadoop.
Because the information is taken from the live stream of changes in the binary log, the
replication of data is in real-time, with changes generated within MySQL transferred instantly
through the binary log and THL to the applied database server. Transactions written to the
binary log are transaction safe, and this safety is replicated in sequence to the target data-
base, without fear of corruption or inconsistency.

How the Hadoop Applier operates
The Hadoop applier within Tungsten Replicator operates by taking row-based THL data
from a Tungsten Replicator extractor and writing a CSV file of the changes. The production
and content of the CSV file is significant.

The file is generated by batching a group of changes into a single CSV file. The resulting
CSV file is then loaded into HDFS using a JavaScript based processor that executes the
necessary commands within Hadoop to apply the files into your Hadoop cluster. Batching
enables the volume of information being captured to be maximized into large files. These
files are more efficient when loading the data into Hadoop because they maximize the
distributed nature of the Hadoop Disk File System (HDFS). The number of transactions and
batch intervals can be controlled to maximize the efficiency and load latency.

The application of the batch file loading into Hadoop is built on the core HDFS and Hadoop
environments, and it is compatible with a range of different Hadoop flavors, including
Cloudera, HortonWorks and IBM InfoSphere BigInsights. The append-only nature of HDFS

11

Real-Time Data Loading Into Hadoop

means that direct replication of UPDATE and DELETE operations within the stream of data-
base changes must be handled differently than within a normal RDBMS. The key to this
process is how the information is generated within the CSV file.

The generated CSV file has a specific format that contains not just the row information, but
also details of the update type, transaction sequence number, row_id within the batch, and
the time of the original commit on the source server. Individual row data is tagged accord-
ing to the operation type:

• An INSERT is recorded as a normal row insert.

• A DELETE is recorded as a deletion using the unique ID for that row from the source
database.

• An UPDATE is recorded as a DELETE operation, followed by an INSERT of the new
version of the data.

The generated CSV file contains one or more rows for each updated row entry, and a
batch file may contain multiple entries for a single row as the row is updated multiple times.
During replication into Hadoop, the unique, incremental, sequence number generated by
each event when it is recorded in the THL can then be used to pick the ‘latest’ version of a
row.

INSERT INTO messages (id, message) VALUES (10,’First Message’);

UPDATE messages SET message = ’Second Message’ WHERE id = 10;

INSERT INTO messages (id, message) VALUES (11,’Interim Message’);

UPDATE messages SET message = ’Third Message’ WHERE id = 10;

DELETE messages WHERE id = 11;

is represented within the CSV as:

Operation Number Primary key ID column Message column
I 1 10 10 First message

D 2 10 10

I 2 10 10 Second message

I 3 11 11 Interim message

D 4 10 10

I 4 10 10 Third message

D 5 11 11

The information can be used to identify the final version by processing all deletes, but
inserting only the latest sequence number of the information. In the above table, sequence
4 contains the ‘current’ version of the information. With a complete record of these

Tungsten Replicator

12

Real-Time Data Loading Into Hadoop

changes, any point in the replication of information can be used as the ‘current’ maximum,
simply by selecting the appropriate sequence number.

Within Hadoop, the final version of the information can be determined by performing a
Map/Reduce operation, or, by using the SQL-like capabilities of Hive to handle the Map/
Reduce job generation to generate the final version of the data. This can be achieved,
either by looking entirely at the CSV data, or by merging existing row data with the change
data. Tungsten Replicator can handle this merge and commit process automatically as part
of the replication procedure, or it can be scheduled through outside mechanisms such as
Cron or Oozie.

Tungsten Replicator can work with the existing provisioned or transferred data, such as
table data previously transferred by Sqoop, and combine this existing information with the
incoming stream of changes that the replicator is generating and transferring into Hadoop.
This allows Tungsten Replicator to be used with both existing and new installations with no
difference in deployment or flexibility.

Replicator Extractor
The extractor side of the Tungsten Replicator reads the information from the source data-
base. The example shown here operates from a MySQL host. With MySQL, data is extracted
from the MySQL binary log by reading and parsing the binary log contents directly.

The MySQL binary log is automatically generated by MySQL and contains a transac-
tion-aware and safe stream of all the changes made to the MySQL server. Because this
information is generated automatically by MySQL, the content and validity of the informa-
tion is assured. Furthermore, because this information is generated by the MySQL server
and is accessible outside of the server, reading and using the content is a low-impact
process. Data is not forcibly extracted from the server, but passively read from the binary
log already used by native MySQL replication.

In addition, because the extractor is reading information from the binary log, the informa-
tion is existing data created as a side-effect of transaction commits. Neither the application
or schema need to be modified for the information to be extracted and written to the THL
for use by the applier replicator.

The only requirement for deploying the replicator is that each table has a primary key, as
this is required to effectively merge the data, and that MySQL has been configured to use
row-based logging by setting the binlog_format variable globally to the ROW format.

To install the replicator, download the Tungsten Replicator package, extract the files, and
then change into the created directory. Installation uses a tool called tpm, the Tungsten
Package Manager; it automates the installation process copying the necessary files and

Tungsten Replicator

13

Real-Time Data Loading Into Hadoop

setting the configuration.

The following command will install a Tungsten Replicator service reading from a local
MySQL binary log to generate the THL information:

$./tools/tpm install alpha \

--install-directory=/opt/continuent \

--master=host1 \

--members=host1 \

--java-file-encoding=UTF8 \

--java-user-timezone=GMT \

--mysql-enable-enumtostring=true \

--mysql-enable-settostring=true \

--mysql-use-bytes-for-string=false \

--svc-extractor-filters=colnames,pkey \

--property=replicator.filter.pkey.addColumnsToDeletes=true \

--property=replicator.filter.pkey.addPkeyToInserts=true \

--replication-password=password \

--replication-user=tungsten \

--skip-validation-check=HostsFileCheck \

--skip-validation-check=ReplicationServicePipelines \

--start-and-report=true

The above configuration includes everything required, including the use of filters that
provide column name and primary key information. Once installed, the replicator will start
extracting information from the existing binary logs and writing the data into THL. The
replicator also opens a network service so that the THL can be read remotely from the slave
replicator that will apply those changes to Hadoop.

Replicator Applier
The applier replicator reads the information from the remote replicator service and writes
the information into Hadoop in a number of stages:

1. Batches the data into suitably sized blocks (configurable).

2. Writes the CSV data, translating the updates into deletes and inserts, and formatting
the file accordingly; a different file is created for each table and schema.

3. Copies the CSV file into HDFS.

4. Executes a Hive query to merge the batched CSV change data into the final tables.

The process and intervals of different steps of the operation are highly configurable.

For example, with a busy database where low-latency of the live data in Hadoop is not

Tungsten Replicator

14

Real-Time Data Loading Into Hadoop

required, the batch file commit size can be set very high with a high interval. This allows for
larger files and less-intermittent loads. Conversely, lower intervals and block commit sizes
give more frequent loads, resulting in a lower latency between the MySQL primary and the
Hadoop replica.

To install the applier replicator, the same basic process is followed, using tpm to perform
the installation that installs and copies the necessary files before starting the replicator.

$./tools/tpm install alpha \

--batch-enabled=true \

--batch-load-language=js \

--batch-load-template=hadoop \

--datasource-type=file \

--install-directory=/opt/continuent \

--java-file-encoding=UTF8 \

--java-user-timezone=GMT \

--master=host1 \

--members=host2 \

--property=replicator.datasource.applier.csvType=hive \

--property=replicator.stage.q-to-dbms.blockCommitInterval=1s \

--property=replicator.stage.q-to-dbms.blockCommitRowCount=1000 \

--replication-password=secret \

--replication-user=tungsten \

--skip-validation-check=DatasourceDBPort \

--skip-validation-check=DirectDatasourceDBPort \

--skip-validation-check=HostsFileCheck \

--skip-validation-check=InstallerMasterSlaveCheck \

--skip-validation-check=ReplicationServicePipelines \

--start-and-report=true

The hostname for the extractor defines the source for the THL and replicator information.
The hive CSV sets conventions to produce data in a form preferred by Hive. The template
type specifies the hadoop command to load the data. Using the hadoop command avoids
complex dependencies on Hadoop Java libraries.

Once the replicator has been configured, the status of the replicator can be monitored by
using the trepctl command. This provides detailed information about the current status,
including the sequence number and latency of writes into Hadoop.

NAME VALUE

------- --------

appliedLastEventId : mysql-

bin.000007:0000000008663481;-1

appliedLastSeqno : 436

appliedLatency : 0.0

Tungsten Replicator

15

Real-Time Data Loading Into Hadoop

channels : 1

clusterName : alpha

currentEventId : NONE

currentTimeMillis : 1391668558116

dataServerHost : 192.168.1.252

extensions :

host : 192.168.1.252

latestEpochNumber : 0

masterConnectUri : thl://tr-hadoop1:2112/

masterListenUri : null

maximumStoredSeqNo : 436

minimumStoredSeqNo : 0

offlineRequests : NONE

pendingError : NONE

pendingErrorCode : NONE

pendingErrorEventId : NONE

pendingErrorSeqno : -1

pendingExceptionMessage : NONE

pipelineSource : thl://tr-hadoop1:2112/

relativeLatency : -974267.884

resourcePrecedence : 99

rmiPort : 10002

role : slave

seqnoType : java.lang.Long

serviceName : alpha

serviceType : local

simpleServiceName : alpha

siteName : default

sourceId : 192.168.1.252

state : ONLINE

timeInStateSeconds : 2.006

transitioningTo :

uptimeSeconds : 96575.133

useSSLConnection : false

Finished status command...

Because the sequence number is unique, replication can be paused or stopped, and then
later restarted without loss or corruption of the data stream. Because the data stream is
sequential and transaction safe, and only complete transactions are transferred, the data is
always consistent for each transaction.

Tungsten Replicator

16

Real-Time Data Loading Into Hadoop

Tungsten Replicator Topologies
Tungsten Replicator supports a number
of different topologies, and these can be
exploited when combined with the Hadoop
applier to enable a range of different data
replication structures.

A standard replication service could repli-
cate data from multiple MySQL servers into
a single Hadoop cluster, using Hadoop to
provide the consolidation of information.
This can be useful when you have multiple
MySQL servers providing a shared data
architecture, but want to perform analytics
on the full body of data across all servers.
For example, a fan-in topology with multiple
sources applied to one Hadoop target.

Alternatively, a ‘fan-in aggregation’ topol-
ogy enables data to be combined within
a MySQL server before replication into
Hadoop.

Different replicators and heterogeneous
targets can also be combined, reading from
the same Tungsten Replicator extractor,
and applying to multiple different hetero-
geneous targets. For example, Tungsten
Replicator could be configured to read
information from the extractor and replicate
some of this information into a MongoDB server for use by the application servers for
document-based access to the content.

Simultaneously, the data could also be written into a Hadoop cluster for the purposes of
analytics to analyze the entire database or change information.

17

Real-Time Data Loading Into Hadoop

Tungsten Replicator Summary
Tungsten Replicator supports a number of different topologies, and these can be exploited
when combined with the Hadoop applier to enable a range of different data replication
structures.

Advantages
• Near-live data replication

• Automated transfer of the entire data-
base, or selected databases and tables

• Incremental data migration, including
start/stop support

• Automated transfer of the entire data-
base, or selected databases and tables

• Low-load extraction of the source data;
requires no access to the source data-
base or query execution

• Requires no database or application
changes

Disadvantages
• Existing data must be separately provi-

sioned

• Requires use of row replication on
MySQL primary

18

Real-Time Data Loading Into Hadoop

About Continuent

Continuent, the MySQL High Availability Company,
provides solutions for continuous operations enabling
business-critical MySQL & MariaDB database applications
to run on a global scale with zero downtime.

Established in 2004, we provide geo-distributed high
availability on-premises, hybrid-cloud, and multi-cloud
environments with our Tungsten Clustering and Tungsten
Replicator products. We also offer industry-leading,
24/7 MySQL & MariaDB support services to ensure
continuous client operations.

Our customers are leading SaaS, e-commerce, financial
services, gaming and telco companies who rely on us
to cost-effectively safeguard billions of dollars in annual
revenue, including Adobe, Carfax, F-Secure, Garmin,
Marketo, Modernizing Medicine, Samsung, Riot Games,
Stitcher, VMware and Vonage.

For more information on our products and services,
please visit www.continuent.com, email us at
sales@continuent.com or call us at (800) 270-9035,
and follow us on Twitter @Continuent.

https://www.continuent.com/
mailto:sales%40continuent.com?subject=
https://twitter.com/Continuent

	Overview
	Existing Migration Technologies
	SQL Dump and Import
	Sqoop
	Talend Open Studio

	Tungsten Replicator
	How the Hadoop Applier operates
	Replicator Extractor
	Replicator Applier

	Tungsten Replicator Topologies
	Tungsten Replicator Summary
	About Continuent

